Chris Ballentine

Chris Ballentine

Chair of Geochemistry

Geochemistry: The application of chemistry to natural systems allows us to address some of the most exciting scientific questions in the Earth Sciences today. These encompass understanding the origin of our solar system and the process that formed the inner planets, how life formed and has been sustained, and the mechanisms that have changed Earth since its formation to give us the planet we now live on. Geochemistry also provides the science to address some of societies most pressing issues. These include resource discovery, safe waste disposal, and understanding local and global environmental change.

Noble Gases: My own research, somewhat ironically as a geochemist, uses the properties of the most chemically inert species we know, the noble gases (helium, neon, argon, krypton and xenon). I use their unique properties to understand the role that fluids and gases play in geological systems. For example, the noble gas low concentrations and large number of stable isotopes means that fluids from different sources often have characteristic isotopic signatures. This allows us to identify where the fluids have come from. Precisely because they are chemically inert, we know that the changes in the source signatures are only caused by the physical processes controlling the fluids in the system. This combination of properties allows us to reconstruct the fluid sources and detail the physical framework controlling liquid and gas migration and interaction that underpin many geological systems – on local to planetary scales.

Applications: I have taken the properties of the noble gases and applied them to make significant advances in our understanding of the origin of the Earth’s atmosphere and the chemical evolution and structure of the Earth’s mantle. I use the same noble gas tools and principles to understand how natural gas fields form, where different gases come from and the role that groundwater plays in hydrocarbon reservoir formation. A subset of this work has been developing quantitative techniques to show how carbon dioxide behaves in the subsurface, essential for safe burial of anthropogenic CO2. This approach extends to understanding the crustal carbon cycle and how critical carbon-rich fluids play a role in supporting life in the subsurface on geological timescales.

Laboratory: The noble gas abundance and isotopic composition of natural samples are determined by static sector gas-source mass spectrometers. Recent advances in multi-collector technology provide us with an unprecedented improvement in the precision and accuracy of sample isotope ratio determination, and in particular for the heavier noble gases. My research team has led the application of this new capability. The Oxford laboratory currently hosts a suite of Thermo instruments and includes a Helix-MC, Helix-SFT, and Argus VI – each providing state of the art multi-collection capability for different sample types.

•   Clay, P.L., Burgess, R., Busemann, H., Ruzié-Hamilton, L., Joachim, B., Day,J.M.D., Ballentine, C.J. Low concentrations in chondritic meteorites reconcile terrestrial halogen accretion models. Nature 551 (2017) 614-618.

•   Chavrit, D., Burgess ,R., Sumino, H., Teagle, D.A.H., Droop, G., Shimizu, A., and Ballentine, C.J. . The contribution of the hydrothermal alteration of the ocean crust to the deep halogen and noble gas cycles. Geochim. Cosmochim. Acta.183 (2016) 106-124.

•   Sherwood Lollar, B., Onstott, T.C., Lacrampe-Couloume G. and Ballentine C.J. The contribution of the Precambrian continental lithosphere to globa H-2 production. Nature 516 (2014) 379-382.

•    Holland, G., Lollar, B.S., Li, L., Lacrampe-Couloume, G., Slater, G.F., Ballentine, C.J., 2013. Deep fracture fluids isolated in the crust since the Precambrian era. Nature 497, 357-360.

•    Zhou Z., Ballentine C. J., Schoell M., S. H. Stevens. 2012. Identifying and quantifying natural CO2 sequestration processes over geological timescales: The Jackson Dome CO2 Deposit, USA. Geochim. Cosmochim Acta. 86. 257-275.

•    Sumino, H., Burgess, R., Mizukami, T., Wallis, S.R., Holland, G., Ballentine, C.J., 2010. Seawater-derived noble gases and halogens preserved in exhumed mantle wedge peridotite. Earth and Planetary Science Letters 294, 163-172.

•    Gilfillan, S.M.V., Lollar, B.S., Holland, G., Blagburn, D., Stevens, S., Schoell, M., Cassidy, M., Ding, Z., Zhou, Z., Lacrampe-Couloume, G., Ballentine, C.J., 2009. Solubility trapping in formation water as dominant CO2 sink in natural gas fields. Nature 458, 614-618.

•     Holland, G., Cassidy, M., Ballentine, C.J., 2009. Meteorite Kr in earth’s mantle suggests a late accretionary source for the atmosphere. Science 326, 1522-1525.

•     Lollar B.S., Ballentine C.J. 2009. Insights into deep carbon derived from noble gases. Nature Geosciences. 2. 543-547

•     Ballentine C.J., Holland G. 2008. What CO2 well gases tell us about the origin of noble gases in the mantle and their relationship to the atmosphere. Phil. Trans. Roy. Soc. London 360, 4183-4203

•     Brandenburg J.P., Hauri E.H., van Keken P.E., Ballentine C.J., 2008. A multiple-system study of the geochemical evolution of the mantle with force-balanced plates and thermochemical effects. Earth and Planet. Sci. Lett. 276, 1-13

•     Holland G., Ballentine C.J. 2006. Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441, 186-191

•     Ballentine C.J., Marty B., Sherwood Lollar B., Cassidy M. 2005. Ne isotopes constrain convection and volatile origin in the mantle. Nature 433, 33-38

•     Zhou Z., Ballentine C.J., Kipfer R., Schoell M., Thibodeaux S., 2005. Noble gas tracing of groundwater/coalbed methane interaction in the San Juan Basin, USA. Geochim. Cosmochim. Acta. 69, 5413-5428

•     Ballentine C.J., van Keken P., Porcelli D., E.H. Hauri, 2002. Numerical models, geochemistry and the Zero Paradox noble gas mantle. Phil. Trans. Roy. Soc. London 360, 2611-2631

•     Porcelli D., Ballentine C.J., Wieler R. 2002. Noble gases in cosmochemistry and geochemistry. Reviews in Mineralogy and Geochemistry 47, 1-18

•     Ballentine C.J., P. Burnard. 2002. Production and release of noble gases in the continental crust. Reviews in Mineralogy and Geochemistry 47, 481-538

•     Ballentine C.J., Marty B. and Burgess R. 2002. Tracing fluid origin, transport and interaction in the crust. Reviews in Mineralogy and Geochemistry 47, 539-614

•     Ballentine C.J., Lollar B. S. 2002. Regional groundwater focusing of nitrogen and noble gases into the Hugoton-Panhandle giant gas field, USA. Geochim. Cosmochim. Acta. 66, 2483-2497



Edited books.

1       D Porcelli, C.J. Ballentine and R. Wieler (eds), Noble gases in cosmochemistry and geochemistry. (2002) Reviews in Mineralogy and Geochemistry Volume 47. The Mineralogical Society of America, Washington, 844pp

 

Academic papers.

 

61      O. Warr, C.A. Rochelle, A. Masters and C. J. Ballentine. Determining noble gas partitioning within a CO2-H2O system at elevated temperatures and pressures. Geochim. Cosmochim Acta. 159 (2015) 112-125

61      B. Weston, R. Burgess, C.J. Ballentine. Disequilibrium degassing model determination of the He-3 concentration and He-3/Ne-22 of the MORB and OIB mantle sources. Earth and Planet Sci. Lett. 410 (2015) 128-139

60      B. Sherwood Lollar, T.C. Onstott, G. Lacrampe-Couloume and C.J. Ballentine. The contribution of the Precambrian continental lithosphere to globa H-2 production. Nature 516 (2014) 379-+

59      N. Kampman, M.J.Bickle, A.Maskell, H.J.Chapman, J.P.Evans, Purser, G., Z.Zhou, M.F. Schaller, J.C.Gattacceca, P.Bertier, F.Chen, A.V.Turchyn, N. Assayag,  C.Rochelle, C.J.Ballentine, A.Busch. Drilling and sampling a natural CO2 reservoir: Implications for fluid flow and CO2-fluid-rock reactions during CO2 migration through the overburden. Chemical Geology 369 (2014) 51-82

58      M. Lawson, D.A. Polya, A. J. Boyce, C. Bryant, D. Mondal, A. Shantz and C.J. Ballentine. Pond-derived organic carbon driving changes in arsenic hazard found in Asian groundwaters. Environmental Science and Technology 47 (2013) 7085-7094

57      G.Holland, B. Sherwood Lollar, L. Li, G. Lacrampe-Couloume, G.F. Slater and C.J. Ballentine, Deep fracture fluids isolated in the crust since the Precambrian era. Nature  497 (2013) 357-360

56      C.J. Ballentine, Geochemistry – A dash of deep nebula on the rocks. Nature (editorial) 486 (2012) 40-41

55      B. Dubacq, M.J. Bickle, M. Wigley, N. Kampman, C. J. Ballentine, and B. Sherwood Lollar, Noble gas and carbon isotopic evidence for CO2-driven silicate dissolution in a recent natural CO2  field. Earth and Planet. Sci. Lett. 341-344 (2012) 10-19

54      S.J. Mackintosh and C. J. Ballentine. Using 3He/4He isotope ratios to identify the source of deep reservoir contributions to shallow fluids and soil gas. Chemical Geology, 304-305 (2012) 142-150

53      Z. Zhou, C. J. Ballentine, M. Schoell and S. H. Stevens. Identifying and quantifying natural CO2 sequestration processes over geological timescales: The Jackson Dome CO2 Deposit, USA. Geochim. Cosmochim Acta. 86 (2012) 257-275

52      M.E. Schlegel, Z. Zhou, J.C. McIntosh, C.J. Ballentine and M.A. Person. Constraining the timing of microbial methane generation in an organic-rich shale using noble gases, Illinois Basin, USA. Chemical Geology, 287 (2011) 27-40

51     H. Sumino, R. Burgess, G. Holland, T. Mizukami, S.R. Wallis & C. J. Ballentine. Seawater-derived noble gases and halogens preserved in exhumed mantle wedge peridotite. Earth and Planet Sci. Lett. 294 (2010) 163-172

50     A. Battani, A. Prinzhofer, E.Deville, C.J. Ballentine. Trinidad mud volcanoes: The origin of the gas. American Association of Petroleum Geologists Memoir,  95 (2010) 225-258

49     G. Holland, M. Cassidy and C.J.Ballentine. Meteorite Kr in Earth’s mantle suggests a late accretionary source for the atmosphere. Science 326 (2009) 1522-1525

48     B. Sherwood Lollar and C.J. Ballentine. Insights into deep carbon derived from noble gases. Nature Geosciences (Progress Report) 2 (2009) 543-547

47     D.T. Murphy, A. D. Brandon, V. Debaille, R. Burgess & C.J. Ballentine, In search of a hidden long term isolated sub-chondritic 142Nd/144Nd reservoir in the deep mantle: Implications for the Nd isotope systematics of the Earth. Geochimica Cosmochimica Acta  74 (2009) 738-750

46     S.M. Gilfillan, B Sherwood Lollar, G Holland, D Blagburn, S Stevens, M Schoell, M Cassidy, Z Ding, Z Zhou, G Lacrampe-Couloume & C. J. Ballentine. Solubility trapping in formation water as dominant CO2 sink in natural gas fields. Nature (letter) 458 (2009) 614-618

45     M. Lawson, C.J. Ballentine,  D.A. Polya, A. J. Boyce, C. Mondal, A. D. Chatterjee, S. Majumder, A. Biswas, The geochemical and isotopic composition of ground waters in West Bengal: tracing ground-surface water interaction and its role in arsenic release. Min. Mag. 72 (2008) 441-444

44     J.P. Brandenburg, E.H. Hauri, P.E. van Keken and C.J. Ballentine, A multiple-system study of the geochemical evolution of the mantle with force-balanced plates and thermochemical effects. Earth and Planet. Sci. Lett. 276 (2008) 1-13

43     C.J. Ballentine and G. Holland, What CO2 well gases tell us about the origin of noble gases in the mantle and their relationship to the atmosphere. Phil. Trans. Roy. Soc. London 360 (2008) 4183-4203

42     D. Acosta-Kane, Acciarri R, Amaize O, et al. (C.J. Ballentine) Discovery of underground argon with low level of radioactive Ar-39 and possible applications to WIMP dark matter detectors. Nuclear Instr. & Methods in Phys. Res. Section A 587 (2008) 46-51

41     S.M. Gilfillan , C.J. Ballentine, Holland G, Blagburn D, Lollar BS , Stevens S, Schoell M, Cassidy M, The noble gas geochemistry of natural CO2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces, USA. Geochim. Cosmochim. Acta 72 (2008)1174-1198

40     C.J. Ballentine, Geochemistry – Earth holds its breath, Nature (editorial) 71 (2007) 294-296

39     G. Holland and C.J.Ballentine, Seawater subduction controls the heavy noble gas composition of the mantle. Nature (Article) 441 (2006) 186-191

38     Z. Zhou and C.J. Ballentine, 4He dating of groundwater associated with hydrocarbon reservoirs. Chemical Geology, Keith O’Nions Volume 226 (2006) 309-327

37     D. Harrison and C. J. Ballentine, Noble gas models of mantle structure and reservoir mass transfer. in Earth’s deep mantle: Structure, composition and evolution (eds R. van der Hilst, J.D.Bass, J. Matas and J. Trampert) Geophysical monograph series 160 (2005) 9-25 AGU

36     Z. Zhou, C.J. Ballentine, R Kipfer, M. Schoell, and S. Thibodeaux, Noble gas tracing of groundwater/coalbed methane interaction in the San Juan Basin, USA Geochim. Cosmochim. Acta 69 (2005) 5413-5428

35     C.J. Ballentine, B. Marty,   B. Sherwood Lollar, and M. Cassidy, Ne isotopes constrain convection and volatile origin in the mantle. Nature (Article) 433 (2005) 33-38

34     R.S. Hasezldine,  O. Quinn, G. England, M. Wilkinson, Z.K. Shipton, J.P. Evans, J. Heath, L. Crossey, C.J. Ballentine, C. Graham, Natural geochemical analogues for carbon dioxide storage in deep geological porous reservoirs, a United Kingdom perspective. Oil and Gas Science Tech Revue IFP 60 (2005) 33-49

33     P. Van Keken, C.J. Ballentine, E. H. Hauri, Convective mixing in the Earth’s mantle. Treatise on Geochemistry: The Mantle and Core (ed R. W. Carlson) 2 (2003) 471-491

32     C.J. Ballentine, Tiny tracers tell tall tales. Science (editorial)  296 (2002) 1247-1248

31     C.J. Ballentine and B. Sherwood Lollar, Regional groundwater focusing of nitrogen and noble gases into the Hugoton-Panhandle giant gas field, USA. Geochim. Cosmochim. Acta 66 (2002) 2483-2497

30     P. van Keken, E.H. Hauri and C.J. Ballentine, Mantle mixing: The generation, preservation, and destruction of chemical heterogeneity. Annual Reviews of Earth and Planet. Sci. 30 (2002) 493-525

29     D Porcelli, C.J. Ballentine and R. Wieler, Noble gases in cosmochemistry and geochemistry. Reviews in Mineralogy and Geochemistry 47 (2002) 1-18

28     C.J. Ballentine and P. Burnard, Production and release of noble gases in the continental crust. Reviews in Mineralogy and Geochemistry 47 (2002) 481-538

27     C.J. Ballentine, B. Marty and R Burgess, Tracing fluid origin, transport and interaction in the crust. Reviews in Mineralogy and Geochemistry 47 (2002) 539-614

26     D. Porcelli and C.J. Ballentine, Models for the distribution of terrestrial noble gases and the evolution of the atmosphere. Reviews in Mineralogy and Geochemistry 47 (2002) 411-480

25     C.J. Ballentine, P. van Keken, D. Porcelli and E.H. Hauri, Numerical models, geochemistry and the Zero Paradox noble gas mantle. Phil. Trans. Roy. Soc. London 360 (2002) 2611-2631

24     C.J. Ballentine, D. Porcelli and R. Wieler, Technical Comment `Noble gases in mantle plumes’. Science 291 (2001) 2269a

23     P. van Keken, C.J. Ballentine and D. Porcelli, A dynamical investigation of the heat and helium imbalance. Earth and Planet. Sci. Lett. 188 (2001) 421-434

22     C.J. Ballentine, M.Schoell, D.Coleman and B.A. Cain, 300-Myr-old magmatic CO2 in natural gases of the west Texas Permian basin. Nature 409 (2001) 327-331

21     C.J. Ballentine and D. Barfod, The origin of atmosphere-derived noble gases in OIB and MORB glass. Earth and Planet. Sci. Lett. 180 (2000) 39-84

20     C.J., Ballentine, M. Schoell, D. Coleman and B.A. Cain, Magmatic CO2 in natural gases in the Permian Basin, West Texas: identifying the regional source and filling history. J. Geochem. Exploration, 69 (2000) 59-63

19     D. Barfod, C.J. Ballentine, A.N. Halliday, G. Fitton. Noble gases in the Cameroon line and the He, Ne and Ar isotopic compositions of HIMU mantle. J. Geophys. Res. 104  (1999) 25509-25527.

18     P. van Keken and C.J. Ballentine. Dynamic models of mantle volatile evolution and the role of phase transitions and temperature-dependent rheology. J. Geophys. Res. 104  (1999) 7137 – 7152

17     C.J. Ballentine and C.M. Hall. An inverse technique for calculating groundwater paleotemperature and other variables using noble gas concentrations in groundwater. Geochim. Cosmochim. Acta 63 (1999) 2315-2336

16     A.N. Halliday, D-C. Lee, J.N. Christensen, M. Rehkämper, W. Yi, Z. Luo, C.M. Hall, C.J. Ballentine, T. Pettke and C. Sterling. Applications of multiple collector-ICPMS to cosmochemistry, geochemistry and paleoceanography. Geochim. Cosmochim. Acta  62 (1998) 919-940

15     P. van Keken and C.J. Ballentine. Whole mantle versus layered mantle convection and the role of a high viscosity lower mantle in terrestrial volatile evolution. Earth and Planet. Sci. Lett. 156 (1998) 19-32

14     A.N. Halliday, J.N. Christensen, D-C. Lee, C.M. Hall, C.J. Ballentine, M. Rehkämper, W. Yi, X. Luo and D. Barfod. ICP multiple collector mass spectrometry and in-situ high precision isotopic analysis. in Applications of Microanalytical techniques to understanding mineralizing processes (eds, M.A. McKibben, W.C. Shanks III and W.I. Ridley) Reviews in Economic Geology 7 (1998) 37-51, Society of Economic Geologists.

13     C.J. Ballentine. Resolving mantle He/Ne and crustal 21Ne/22Ne in well gases. Earth and Planet. Sci. Lett. 152 (1997) 233-250

12     B. Sherwood Lollar,  C.J. Ballentine and R.K. O’Nions. The fate of mantle-derived carbon in continental sedimentary basins: integration of C/He relationships and stable isotope signatures. Geochim. Cosmochim. Acta  61 (1997) 2295-2307

11     C.J. Ballentine, D-C. Lee and A. N. Halliday. Hafnium isotopic studies of the Cameroon Line and new HIMU paradoxes. Chemical Geology Hofmann Volume 139 (1997) 111-124

10     C.J. Ballentine, R.K. O’Nions and M. Coleman. A Magnus opus: He, Ne and Ar isotopes in a North Sea oil field. Geochim. Cosmochim. Acta. 60 (1996) 831-849

9       B. Sherwood-Lollar, R.K. O’Nions and C.J. Ballentine. A comparison of mantle neon systematics in CO2 and hydrocarbon rich gas reservoirs. Geochim. Cosmochim. Acta. 58 (1994) 5279-5290

8       C.J. Ballentine, M. Mazurek and A. Gautschi. Thermal constraints on crustal rare gas release and migration: Evidence from Alpine fluid inclusions. Geochim. Cosmochim. Acta. 58 (1994) 4333-4348

7       C.J. Ballentine and R.K. O’Nions. The use of natural He, Ne and Ar isotopes to study hydrocarbon related fluid provenance, migration and mass balance in sedimentary basins. in: Geofluids: Origin, Migration and Evolution of Fluids in Sedimentary Basins (ed J Parnell) Geological Society Special Publication 78 (1994) 347-361

6       R.K. O’Nions and C.J. Ballentine. Rare gas studies of basin scale fluid movement. Phil. Trans. R. Soc. Lond. A. 344 (1993) 141-156

5       C.J. Ballentine and R.K. O’Nions. The use of natural He, Ne and Ar isotopic tracers in constraining hydrocarbon transport. in: Petroleum geology of NW Europe:  Proceedings of the 4th Conference. (ed J. R. Parker) (1993) 1339-1345

4       T. Elliot, C.J. Ballentine, R.K. O’Nions and T. Ricchiuto. Carbon, Helium, Neon and Argon isotopes in a Po Basin natural gas field. Chemical Geology 106 (1993) 429-440

3       C.J. Ballentine and R.K. O’Nions. The nature of mantle neon in Vienna Basin hydrocarbon reservoirs. Earth and Planet. Sci. Lett. 113 (1992) 553-567

2       C.J. Ballentine, R.K. O’Nions, E.R. Oxburgh, F. Horvath and J. Deak. Rare gas constraints on hydrocarbon accumulation, crustal degassing and groundwater flow in the Pannonian Basin. Earth and Planet. Sci. Lett. 105 (1991) 229-246

1       A. Gautschi, E. Faber, J. Meyer, J. Mullis, F. Schenker and C.J. Ballentine. Hydrocarbon and noble gases in fluid inclusions of Alpine Calcite Veins – Implications for hydrocarbon exploration. Bull Swiss Assoc. Petroleum Geol. and Eng. 56 (1990) 13-36