Improved Precision and Reference Materials for Stable Carbon Isotope Measurement in Basaltic Glasses using Secondary Ion Mass Spectrometry

Shea J, Hughes E, Balzer R, Bindeman I, Blundy J, Brooker R, Botcharnikov R, Cartigny P, Gaetani G, Kilgour G, Maclennan J, Monteleone B
,
et al

We introduce three new synthetic basalt reference materials and a new high-precision set-up for stable carbon isotope measurement in basaltic glasses using a large-geometry secondary ion mass spectrometry (SIMS) instrument. The new reference materials, characterised for carbon mass fraction and isotope composition, show homogeneity for in situ analysis for the reported set-up. Their bulk hydrogen mass fraction and isotope ratios are reported. Our SIMS protocol uses multi-collection, cycling between concurrent measurements of 12C and 13C on electron multipliers, and either 30Si or 18O, as a reference mass, on a 1011 Ω resistor Faraday cup. This set-up achieves high measurement repeatability for δ13C down to ± 0.35‰ 1RSE at 1706 +89/-88 μg g-1 CO2, with ± 1.00‰ 1RSE or better between 163 +5.1/-5.2 and 267 +8.9/-8.9 μg g-1 CO2, using a 10 nA primary beam current and a 40 μm analytical pit over a 100 cycle analysis. Carbon blanks were characterised by measuring carbon-free olivines, allowing for blank corrections on δ13C measurements. After blank and instrument mass fractionation corrections, we measure δ13C in glasses down to 26.16 +0.85/-0.86 μg g-1 CO2 with a final measurement standard sample deviation of ± 2.97‰ 1s. We report in situ measurements on an ocean floor basaltic glass and a set of synthetic basaltic glasses to demonstrate our approach. Reference materials and the SIMS set-up improve the accuracy and precision of δ13C measurements in natural basaltic glasses across a wide range of geologically relevant carbon contents.