What is a vote-map?

P-wave models
S-wave models
Global tomography models
GyPSuM-P GyPSuM-S
HMSL-P06 HMSL-S06
PRI-P05 PRI-S05
SP12RTS-P SP12RTS-S
SPani-P SPani-S
Hosseini2016 S20RTS
GAP-P4 S362ANI+M
LLNL_G3Dv3 S40RTS
MITP08 SAVANI
MITP_USA_2011MAR SAW642ANb
MITP_USA_2016MAY SEMUCB-WM1
UU-P07 SEMum
SGLOBE-rani
TX2011
TX2015
SEISGLOB1
SEISGLOB2
Regional/depth restricted models
Sigloch_NAm_2011 3D2016_09Sv
SL2013sv
Zaroli2016
Depth: km
Coastlines:

|Velocities| ≥
High or low velocities:
Min number of votes to be plotted:
Remove mean:
Reference model:
Projection:
Centre longitude:
Centre latitude: (For orthographic)
Plot graticules:

Coordinates of the map domain (only for Equidistant Cylindrical):
llcrnrlon
llcrnrlat
urcrnrlon
urcrnrlat
Present-day plate boundaries:
Hotspots:
Plate reconstruction model:
Subduction zones:
Ridges/transforms:
Coastlines:

Select a reconstruction time option:


Option 1:
Reconstruction time: Ma
Colour for reconstructed plate boundaries:
Colour for reconstructed coastlines:
Option 2:
Sinking rates (mm/year)
Upper mantle:
Lower mantle:

Second reconstruction:
Sinking rates (mm/year)
Upper mantle:
Lower mantle:
Dataset:
Scaling factor for shear wave splitting lines:
Colour:

* References are tabulated at the bottom of this page.
Dataset:
Opacity factor for ULVZ plots:
Colour:

* References are tabulated at the bottom of this page.
Select background colour:


Selected

Available colour bars:
VM-001
VM-002
BuRd
coolwarm
BuYlRd
spectral_r
seismic
cpt_seismic
muted-d-09
bwr
rainbow
jet
spectral
GMT_panoply
GMT_haxby
gray
gray_r
oslo
lajolla
bilbao
Oranges
Reds
gnuplot
gist_earth
terrain
BGBr
arctic
ETOPO1
meyers

DPI (Dots Per Inch): 10 ≤ ≤ 500


Download grid:




What is a vote-map?

Vote Maps are generated from stacking tomography models (see table below) and identifying where the models agree based on an increasing vote count at a specified depth [Shephard et al. 2017].

Method:
A vote map is based on depth slices of N tomography models, where N≥1. A binary threshold of 0 or 1 is applied to every lat-lon pixel of every depth slice, followed by pixel-wise summation of all N depth slices into a vote map [Shephard et al. 2017]. The pixels of a vote map hence take values between 0 and N, because each tomography model contributes one vote on every pixel. The binary threshold metric for a high-velocity / low-velocity vote map is designed to associate the value of 1 (yes) with a pixel if its seismic velocity is found to be faster / slower than ambient mantle. Five implemented threshold metrics (zero, mean, std, rms, and median) permit to choose a lower or higher bar for what confidently means. In the example of a high-velocity vote map, the zero metric includes all areas that are seismically fast in that depth slice (dv/v>0). The stricter mean metric includes only regions dv/v>v0, where v0 is the average value of all occurrences of dv/v>0. Similarly, std, rms or median include only regions of dv/v>v1, where v1 is the standard deviation, root mean square or median of a model dv/v histogram at that depth, respectively.

For more information, please refer to our companion article:
Shephard, G.E., K.J. Matthews, K. Hosseini, and M. Domeier, On the consistency of seismically imaged lower mantle slabs. Nature Scientific Reports.


Tomography Models

P-wave Model Data Type Reference Model Reference Source and Additional Notes
Hosseini2016 Body waves IASP91 Hosseini (2016) PhD thesis From lead author of this study (Kasra Hosseini)
GAP-P4 Body waves GAP Obayashi et al. (2013) doi:10.1002/2013GL057401

Fukao and Obayashi (2013) doi:10.1002/2013JB010466
JAMSTEC Data Catalog website
http://d-earth.jamstec.go.jp/GAP_P4/
GyPSuM-P Body waves PREM (modified) Simmons et al. (2010) doi:10.1029/2010JB007631 IRIS EMC website

- GyPSuM-P and GyPSuM-S were made using a joint inversion (constrained)
HMSL-P06 Surface waves, body waves AK135 for ray tracing, traveltime measurements for each phase have the mean removed Houser et al. (2008) doi:10.1111/j.1365-246X.2008.03763.x Personal website (Christine Houser)
https://members.elsi.jp/~chouser/models.html
LLNL_G3Dv3 Body waves Custom averaged model Simmons et al. (2012) doi:10.1029/2012JB009525 Lawrence Livermore National Laboratory (LLNL) website
https://www-gs.llnl.gov/nuclear-threat-reduction/nuclear-explosion-monitoring/global-3d-seismic-tomography
MITP08 Body waves AK135 Li et al. (2008) doi:10.1029/2007GC001806 Published supplementary material
MITP_USA_2011MAR Body waves AK135 Burdick et al. (2012) doi:10.1785/gssrl.83.1.23 Published supplementary material
MITP_USA_2016MAY Body waves AK135 Burdick et al. (2017) doi:10.1785/0220160186 Published supplementary material
PRI-P05 Body waves IASP91 Montelli et al. (2006) doi:10.1029/2006GC001248 GLOBALSEIS website
https://www.geoazur.fr/GLOBALSEIS/Models.html
Sigloch_NAm_2011
(regional North America model)
Body waves IASP91 Sigloch (2011) doi:10.1029/2010GC003421 Published supplementary material
SP12RTS-P Surface waves, body waves, normal modes PREM Koelemeijer et al. (2016) doi:10.1093/gji/ggv481 Personal website (Paula Koelemeijer)
https://www.earth.ox.ac.uk/~univ4152/downloads_sp12rts.html

- SP12RTS-P and SP12RTS-S were made using a joint inversion (unconstrained)
SPani-P Surface waves, body waves PREM Tesoniero et al. (2015) doi:10.1002/2015JB012026 Personal GitHub page (Andrea Tesoniero)
https://github.com/atesoniero/SPani

- SPani-P and SPani-Si were made using a joint inversion (constrained)
UU-P07 Body waves AK135 Amaru (2007) PhD thesis Personal communication (Wim Spakman)

S-wave Model Data Type Reference Model Reference Source and Additional Notes
3D2016_09Sv
(upper mantle model)
Surface waves Custom averaged model Debayle et al. (2016) doi:10.1002/2015GL067329 Personal website (Eric Debayle)
http://perso.ens-lyon.fr/eric.debayle/
GyPSuM-S Body waves TNA/SNA Simmons et al. (2010) doi:10.1029/2010JB007631 IRIS EMC website

- GyPSuM-P and GyPSuM-S were made using a joint inversion (constrained)
HMSL-S06 Surface waves, body waves AK135 for ray tracing, traveltime measurements for each phase have the mean removed Houser et al. (2008) doi:10.1111/j.1365-246X.2008.03763.x Personal website (Christine Houser)
https://members.elsi.jp/~chouser/models.html
PRI-S05 Body waves IASP91 Montelli et al. (2006) doi:10.1029/2006GC001248 GLOBALSEIS website
https://www.geoazur.fr/GLOBALSEIS/Models.html
S10MEAN Averaging 10 tomography models None Doubrovine et al. (2016) doi:10.1002/2015GC006044 Personal communication (Pavel Doubrovine)

- No reference model — only relative variations are meaningful
S20RTS Surface waves, body waves, normal modes PREM Ritsema et al. (1999) doi:10.1126/science.286.5446.1925 Personal communication (Paula Koelemeijer)
S362ANI+M Surface waves, body waves, normal modes STW105 Moulik and Ekström (2014) doi:10.1093/gji/ggu356 Personal website (Raj Moulik)
http://www.ldeo.columbia.edu/~moulik/Research/3D/S362ANI+M/model.php
S40RTS Surface waves, body waves, normal modes PREM Ritsema et al. (2011) doi:10.1111/j.1365-246X.2010.04884.x Personal communication (Paula Koelemeijer)
SAVANI Surface waves, body waves PREM Auer et al. (2014) doi:10.1002/2013JB010773 Personal website (Thorsten Becker)
http://www-udc.ig.utexas.edu/external/becker/tdata.html
SAW642ANb Waveform PREM Panning et al. (2010) doi:10.1029/2010JB007520 Personal website (Mark Panning)
http://users.clas.ufl.edu/mpanning/SAW642ANb.html
SEISGLOB1 Surface waves, normal modes PREM Durand et al. (2016) doi:10.1002/2016GL069650 IRIS EMC website
SEISGLOB2 Surface waves, body waves, normal modes PREM Durand et al. (2017) doi:10.1093/gji/ggx405 IRIS EMC website
SEMUCB-WM1 Waveform Custom averaged model French and Romanowicz (2014) doi:10.1093/gji/ggu334 Seismo Berkeley website (version: r20151019)
http://seismo.berkeley.edu/~barbara/SEMum2/
SEMum Waveform PREM? Lekic and Romanowicz (2011) doi:10.1111/j.1365-246X.2011.04969.x IRIS EMC website
SGLOBE-rani Surface waves, body waves PREM Chang et al. (2015) doi:10.1002/2014JB011824 IRIS EMC website
SL2013sv
(upper mantle model)
Surface waves AK135 Schaeffer and Lebedev (2013) doi:10.1093/gji/ggt095 Personal website (Andrew Schaeffer)
https://homepages.dias.ie/aschaeff/Andrew_Schaeffer/SL2013sv.html
SP12RTS-S Surface waves, body waves, normal modes PREM Koelemeijer et al. (2016) doi:10.1093/gji/ggv481 Personal website (Paula Koelemeijer)
https://www.earth.ox.ac.uk/~univ4152/downloads_sp12rts.html

- SP12RTS-P and SP12RTS-S were made using a joint inversion (unconstrained)
SPani-S Surface waves, body waves PREM Tesoniero et al. (2015) doi:10.1002/2015JB012026 Personal GitHub page (Andrea Tesoniero)
https://github.com/atesoniero/SPani

- SPani-P and SPani-S were made using a joint inversion (constrained)
TX2011 Body waves TX2011_ref Grand (2002) doi:10.1098/rsta.2002.1077 IRIS EMC website
TX2015 Body waves TX2011_ref Lu and Grand (2016) doi:10.1093/gji/ggw072 Personal communication (Stephen Grand/Wim Spakman)
Zaroli2016 Body waves IASP91 Zaroli (2016) doi:10.1093/gji/ggw315 Personal communication (Christophe Zaroli)
Average Model Data Type Reference Model Reference Source and Additional Notes
PMEAN Averaging tomography models PREM Becker and Boschi (2002) doi:10.1029/2001GC000168 Personal website (Thorsten Becker)
http://www-udc.ig.utexas.edu/external/becker/tdata.html
SMEAN Averaging tomography models PREM Becker and Boschi (2002) doi:10.1029/2001GC000168 Personal website (Thorsten Becker)
http://www-udc.ig.utexas.edu/external/becker/tdata.html
S10MEAN Averaging 10 tomography models None Doubrovine et al. (2016) doi:10.1002/2015GC006044 Personal communication (Pavel Doubrovine)

- No reference model — only relative variations are meaningful

Plate Reconstruction Models

Model Timeframe (Ma) Spatial Extent Reference Additional Notes
Matthews et al. (2016) 410-0 Global Matthews et al. (2016)
doi:10.1016/j.gloplacha.2016.10.002
Based on the models of Domeier and Torsvik (2014) (410-250 Ma) and Müller et al. (2016) (230-0 Ma).
Zahirovic et al. (2016) 230-0 Global (Tethys focus) Zahirovic et al. (2016)
doi:10.1016/j.earscirev.2016.09.005
Regional model for the Tethys and Southeast Asia embedded in an updated version of the global model of Müller et al. (2016).
Seton et al. (2012) 200-0 Global Seton et al. (2012)
doi:10.1016/j.earscirev.2012.03.002

Hotspot Datasets

Reference Additional Notes
Whittaker et al. (2013) AGU Fall Meeting abstract This dataset is from the GPlates 2.0 Sample Data and is described as follows: Locations were compiled from Montelli et al. (2004), Courtillot et al. (2003), Steinberger et al. (2000), and Anderson and Schramm (2005). Plumes closer than 500 km were combined into an averaged location. (small circles)
Whittaker et al. (2015) doi:10.1038/ngeo2437 This dataset consists of deeply sourced mantle plumes. (large circles)

Shear Wave Splitting

Dataset Reference
SplittingDataBase Wüstefeld et al. (2009) https://doi.org/10.1016/j.pepi.2009.05.006

ULVZ

Dataset Reference Comments
ULVZ-Database Yu and Garnero (2018) doi:10.1002/2017GC007281
ULVZ-Database, GitHub page of Shule Yu
"ULVZ detected": All.yes.grd.txt database in FresnelZoneAdded page.
"weak ULVZ detected": All.may.grd.txt database in FresnelZoneAdded page.
"no ULVZ detected": All.no.grd.txt database in FresnelZoneAdded page.


Web development: Kasra Hosseini (kasra.hosseinizad@earth.ox.ac.uk)
Web design: Kasra Hosseini, Kara Matthews, Maria Tsekhmistrenko