Eddy Saturation of Equilibrated Circumpolar Currents

DAVID R. MUNDAY*
Department of Physics, University of Oxford, Oxford, UK

HELEN L. JOHNSON
Department of Earth Sciences, University of Oxford, Oxford, UK

DAVID P. MARSHALL
Department of Physics, University of Oxford, Oxford, UK

ABSTRACT

We use a sector configuration of an ocean general circulation model to examine the sensitivity of circumpolar transport and meridional overturning to changes in Southern Ocean wind stress and global diapycnal mixing. We find that at eddy-permitting, and finer, resolution the sensitivity of circumpolar transport to forcing magnitude is drastically reduced. At sufficiently high resolution, there is little or no sensitivity to wind stress, even in the limit of no wind. In contrast, the meridional overturning circulation continues to vary with Southern Ocean wind stress, but with reduced sensitivity in the limit of high wind stress. We find that both the circumpolar transport and meridional overturning continue to vary with diapycnal diffusivity at all model resolutions. The circumpolar transport becomes less sensitive to changes in diapycnal diffusivity at higher resolution, although sensitivity always remains. In contrast, the overturning circulation is more sensitive to change in diapycnal diffusivity when the resolution is high enough to permit mesoscale eddies. These models cast doubt upon the validity of climate projections obtained using non-eddy-resolving ocean models.

1. Introduction

The Southern Ocean (SO) encircles Antarctica and connects the major ocean basins through the agency of the Antarctic Circumpolar Current (ACC) and its associated Meridional Overturning Circulation (MOC). Cold abyssal waters, enriched in carbon and nutrients, upwell in the SO amidst a complex interleaving of water masses, giving its circulation a global significance (Rintoul et al. 2001; Meredith et al. 2011). As the cross-roads of the oceans, understanding the SO circulation, and how that circulation might change, is thus crucial to understanding both the past and future climate of the Earth system.

The simple model due to Gnanadesikan (1999) (henceforth G99) heuristically links the global pycnocline depth, and thus the circumpolar transport of the ACC (T_{ACC}) through thermal wind balance (Gnanadesikan and Hallberg 2000; Munday et al. 2011), to four processes:

i. SO wind forcing;

ii. the eddy bolus transport, via baroclinic instability, in the SO;

iii. deep water formation at Northern high latitudes;

iv. global diapycnal mixing.

The southern hemisphere westerly winds may have been significantly different from the present day mean climate at times in the past (see, for example, Otto-Bliesner et al. 2006). Similarly, estimates of tidal mixing for the Last Glacial Maximum (LGM) suggest that diapycnal mixing was higher (Egbert et al. 2004), particularly in the North Atlantic (Green et al. 2009). However, obtaining robust estimates of global palaeoceanographic circulations, whether at the LGM or otherwise, remains difficult due to a paucity of data (Wunsch 2003). As a result, numerical and analytical models of varying complexity must be used to assess how such changes might have impacted the SO circulation and global climate. Similarly, projections of future climate suggest changes in both the magnitude and position of the southern hemisphere westerlies are plausible (IPCC AR4 WG1 2007). The consequences for SO circulation and the potential for climate feedbacks have yet to be robustly determined.

In the context of the G99 model, the response of the SO circulation to changing forcing has been investigated using numerical ocean models for wind forcing (Saenko et al. 2002; Delworth and Zeng 2008; Allison et al. 2010;
Wang et al. 2011), diapycnal diffusivity (Gnanadesikan and Hallberg 2000; Munday et al. 2011), and northern sinking (Fučkar and Vallis 2007). However, these models are usually non-eddy-resolving, necessitating the use of an eddy parameterisation for the entire mesoscale eddy field.

Recent results indicate that the response of an eddy-resolving ocean model to changes in wind forcing differs from that of a non-eddy-resolving ocean model with parameterised eddies. In terms of the circumpolar transport, resolving the eddy field leads to a much lower sensitivity to increased wind forcing (Hallberg and Gnanadesikan 2001; Tansley and Marshall 2001; Hallberg and Gnanadesikan 2006). Such lack of sensitivity was first suggested by Straub (1993), and continues to be observed in a growing range of eddy-resolving models (Hogg and Blundell 2006; Meredith and Hogg 2006). This phenomenon has become known as eddy saturation and can be thought of as a marginally critical balance being maintained by the tendency for near-surface Ekman transport to steepen isopycnals and baroclinic eddies to flatten them. Investigations into the eddy saturation behaviour of numerical models have recently been extended to primitive equation models using realistically complex geometry (Farneti et al. 2010; Farneti and Delworth 2010). Results indicating a prevailing eddy saturation-type regime for the SO and ACC continue to accrue.

Consideration of the impact of the Southern Annular Mode (SAM) in an eddy-resolving model also shows a characteristically different response to that of a model with parameterised eddies (Screen et al. 2009). Changes in eddy kinetic energy (EKE) and eddy heat flux take place with a characteristic time-scale of 2-3 years, roughly equivalent to that seen in simpler numerical models (Hogg et al. 2008) and observations (Meredith et al. 2004). Furthermore, this timescale is corroborated by that seen in the observational record (Böning et al. 2008).

Attention has recently moved to the response of the SO MOC to changing wind forcing, which can be broadly decomposed into the wind-driven Eulerian upwelling and the downwelling eddy bolus flux (Johnson and Bryden 1989; Marshall and Radko 2003; Marshall 1997). The net Residual MOC (RMOC) is then a subtle balance between these two opposing contributions (Watson and Naveira Garabato 2006). It is the RMOC that is the most relevant circulation when considering, for example, the transport of temperature, nutrients, and other climatically important tracers. Use of the RMOC to describe the upwelling in the SO eliminates the spurious “Deacon cell” and its unphysical overestimate of net upwelling (Danabasoglu et al. 1994, also see Döös and Webb, 1994)

Hallberg and Gnanadesikan (2006) describe the MOC response to changes in wind forcing in their eddy-permitting hemispherical isopycnal model as “attenuated” with respect to a coarse resolution version of the same model with parameterised eddies. This reduced response of the RMOC to wind anomalies, when compared to the linear change in the Ekman overturning contribution, was christened eddy compensation by Viebahn and Eden (2010) and, like eddy saturation, has been observed in a growing range of ocean models (Henning and Vallis 2005; Spence et al. 2009; Farneti et al. 2010). In the idealised study of Abernathey et al. (2011) the degree of eddy compensation was found to be crucially dependent upon the form of the surface buoyancy condition, a fixed flux surface buoyancy forcing resulting in less sensitivity to changes in wind stress than a restoring condition. Regardless, in all cases the increase in both upper and lower cells of the RMOC was always much less than the increase in the Eulerian upwelling expected from changes in the surface layer’s Ekman transport.

Eddy saturation and eddy compensation are not the same phenomenon (Meredith et al. 2012), and the extent of the connection between them remains the subject of ongoing research. However, taken together they present an exciting possibility regarding climate change. The close link between stratification and transport, highlighted by the model of G99, indicates that eddy saturation is not just an argument regarding circumpolar transport; an eddy saturated circumpolar current would have very close to invariant isopycnal slope/stratification. A totally eddy compensated ocean would also show little change in up-/downwelling along those isopycnals. Hence, modification of global climate by increased upwelling of carbon-rich water in the SO, as hypothesised by Toggweiler et al. (2006), might well have only limited applicability to the real climate system.

The wind-stress perturbations applied in the experiments discussed above have typically been modest, and so the full range of parameter space has not been sampled. Furthermore, to capture all the timescales inherent to ocean adjustment, the full meridional extent of the ocean must be simulated (Allison et al. 2011), and the model integrated to equilibrium to enable a robust understanding of the results (Treguier et al. 2010). Current ocean-only and coupled climate models are run with a wide range of diapycnal diffusivities, and little is really known regarding the sensitivity of an eddy-resolving model to this parameter. Whilst the degree of sensitivity to the globally-integrated diapycnal diffusivity is crucially dependent upon the presence or absence of wind (Munday et al. 2011), assessment of changes in this sensitivity in eddy-resolving models has yet to be carried out over the same swath of parameter space. Here we investigate both of these problems in an eddy-permitting ocean model (MITgcm) that has been integrated to as close to equilibrium as we can afford.

We begin in Section 2 by describing our novel computational domain and some of the numerical choices and compromises made. The key results from a wide range of numerical experiments are introduced in Section 3. A more detailed discussion of the experiments begins with a summary of the basic model state at a range of grid spac-
ings in Section 4. Sections 5 and 6 discuss two separate sets of experiments in which the surface wind stress and diapycnal diffusivity have been independently varied. We close with a summary of our conclusions and a discussion of their significance in Section 7.

2. Model numerics and domain

In order to investigate the effects of eddy saturation and eddy compensation at equilibrium, we employ MITgcm (Marshall et al. 1997a,b) in an idealised modelling framework. This allows us to conduct many experiments under different combinations of forcing and parameter choices. Geometrically, the model domain takes the form of the narrow sector shown in Fig. 1 in spherical polar coordinates, with the implied full variation of the Coriolis parameter. Latitudinally this domain extends from 60°S to 60°N, but is only 20° wide in longitude. At the southern end of the sector, a reentrant channel of 20° latitudinal width allows for the formation of a circumpolar current. The use of such model geometry has a considerable provenance within the ocean modelling literature as a computationally efficient means to investigate, for example, the meridional overturning circulation (Bryan 1986; von der Heydt and Dijkstra 2008; Wolfe and Cessi 2009), the parameter sensitivity of general circulation models (Bryan 1987), the processes setting ocean stratification (Henning and Vallis 2004, 2005; Wolfe and Cessi 2010), and the impact of ocean circulation on ocean carbon storage and atmospheric carbon dioxide concentration (Ito and Follows 2003, 2005).

The meridional extent is dictated by the desire to produce an interhemispheric overturning of the type currently thought to take place in the North Atlantic. This prevents a vanishingly small residual overturning in the deep ocean caused by a solid boundary at the Equator. It also avoids the use of artificial deepening of the stratification on the northern boundary of the circumpolar channel using, for example, northern boundary restoring zones (Viebahn and Eden 2010; Abernathey et al. 2011; Morrison et al. 2011) or increased diapycnal diffusivity (Hogg 2008). It comes at an enhanced computational cost due to the increase in the size of the domain; this disadvantage is more than offset by the ability of the stratification and RMOC to evolve together dynamically.

Achieving equilibrium is important in understanding the role of eddies in ocean models (Treguier et al. 2010), but remains elusive in costly global model simulations. The decision to use a longitudinally narrow sector is dictated by the desire to integrate experiments with a fine enough grid spacing to permit/resolve eddies to thermodynamic and biogeochemical equilibrium. By restricting our domain in this way, to roughly a factor of 10-20 times smaller than the actual longitudinal extent of the ocean, we are able to sufficiently speed up our model runs to attain this goal. Early tests with a narrower sector indicate that 20° is sufficiently wide to prevent undue influence on the eddy field of the domain width.

The meridional extent of the circumpolar channel is several times that of Drake Passage, although it remains narrower than the width of the Southern Ocean south of Australia and New Zealand. Initial testing demonstrated that a channel of this width was required to obtain a circumpolar transport of the same order as that observed for the ACC (not shown). This is because the sector is otherwise too narrow for the modelled circumpolar current to migrate north and capture the wind forcing as it might be expected to do (Allison et al. 2010). Similarly wide circumpolar channels are often used in other sector model applications (see, for example, Henning and Vallis 2005; Ito and Follows 2005).

The bathymetry of the model is idealised to a flat-bottom over the majority of the domain. Throughout the main 20° wide sector, the ocean has a depth of 5000m. However, a 1° (or 1 grid box, whatever is the greater) region of half depth is appended to the domain within the confines of the circumpolar channel (see Fig. 1). This ridge blocks all contours of \(f/H \) and ensures that the zonal momentum input by the wind is balanced by bottom form stresses (Munk and Palmén 1951; Olbers 1998).

In the vertical, the model domain has 42 unevenly spaced levels. The surface layer is the thinnest, at 10m, whilst the bottom 10 levels have a common thickness of 250m (the maximum used). All model resolutions use a constant grid spacing, in degrees, in the zonal direction. However, to ensure accurate representation of the eddy field, the grid spacing in the meridional direction is scaled by the cosine
of latitude. This means that, regardless of latitude, the grid boxes are close to being square.

All model resolutions use the Gent-McWilliams (GM) parameterisation of mesoscale eddies (Gent and McWilliams 1990; Gent et al. 1995) via the skew-flux formulation of Griffies (1998), which also includes the rotation of “vertical” diffusivity into the diapycnal direction (Redi 1982). At coarse grid spacing, \(\Delta = 2^\circ \) or coarser, GM is used as a parameterisation of the entire eddy field with the coefficient \((\kappa_{GM}) \) set to a large value of 1000m\(^2\)s\(^{-1}\), typical of that used in general circulation models. At grid spacing of \(\Delta = 1/2^\circ \) and finer, GM is used as an adiabatic sub-gridscale closure for the turbulent dissipation of potential temperature and salinity, as per the argument of Roberts and Marshall (1998). The co-efficient value is chosen such that the contribution of GM to the meridional heat transport is small with respect to the other terms. See Table 2 for the values of \(\kappa_{GM} \) used at different grid-spacings. No other forms of buoyancy dissipation are otherwise needed. Near the surface the parameterisation is tapered as per Gerdes et al. (1991) with a maximum isopycnal slope of \(2 \times 10^{-3} \) applied. This combination was chosen in order to prevent the shutdown of high latitude convection at coarse resolution via GM “taking over” in the near surface layers.

We use the vector invariant form of the momentum equations with the “wet point” method of Jamart and Ozer (1986) applied to both nonlinear and Coriolis terms. Potential temperature and salinity are advected using the one-step monotonicity-preserving 7th order advection scheme due to Duru and Tenaud (2004). This reduces numerical diapycnal mixing to a low level (Hill et al. 2012). Side and bottom boundary conditions are no-slip. Convective adjustment is carried out by increasing the vertical diffusivity to 100m\(^2\)s\(^{-1}\) whenever static instability is present. Viscous dissipation closures for the momentum equations are resolution dependent, with harmonic friction being used for grid spacings of \(2^\circ \) and coarser, and biharmonic friction at grid spacings of \(1/2^\circ \) and finer. Regardless of grid spacing, viscosity is specified via a grid-scale Reynolds number, which ensures that as resolution and time-step are co-varied, the viscosity also changes appropriately. As with the choice of tracer advection scheme, appropriate specification of this parameter is essential in minimising numerical diapycnal mixing (Ilicak et al. 2012). The model uses the nonlinear equation of state of Jackett and McDougall (1995) with temporally constant reference pressure. Resolution dependent model parameters are given in Table 2.

In keeping with the idealised geometry, we choose similarly idealised surface forcing and boundary conditions. Wind forcing is applied as an idealised jet with a peak value of 0.2Nm\(^{-2}\) at 45°S. The shape of this jet is given by

\[
\tau(\theta) = \begin{cases}
\tau_0 \sin^2 (\pi (\theta + 60)/30) & \text{if } \theta < -30, \\
0 & \text{if } \theta > -30.
\end{cases}
\]

where \(\theta \) is the latitude and \(\tau_0 \) is the peak wind stress. The wind stress field used in the basic state experiments is shown graphically in Fig. 2a. There is no wind significantly north of the reentrant channel in order to emphasise the role of the Southern Ocean winds in ventilating the deep ocean and driving Southern Ocean circulation. Due to the narrowness of the sector, gyres generated by wind to the north would be severely reduced in transport with respect to, for example, the observed North Atlantic sub-tropical gyre. For these reasons, we choose to exclude such gyres from the forcing entirely. This wind forcing is very similar to that used by Viebahn and Eden (2010). The key difference is the presence of some wind stress curl just to the north of the circumpolar channel, which helps connect the overturning within the channel to that of the basin. The off-centre position of the peak wind forcing, with respect to the centre of the channel, places the model ACC towards the northern edge of the channel.

For potential temperature (henceforth temperature), we choose a simple restoring condition with an idealised profile similar to that used in many multiple equilibria studies (see, for example, von der Heydt and Dijkstra 2008). This condition broadly mimics the observed surface temperature distribution of the Atlantic, with cold water at the northern/southern boundary and warm water at the Equator. The functional form of the surface restoring temperature
is given by

\[T(\theta) = \begin{cases}
 T_S + \Delta T \sin(\pi (\theta + 60)/120) & \text{if } \theta < 0 \\
 T_N + (\Delta T + T_S - T_N) \sin(\pi (\theta + 60)/120) & \text{if } \theta > 0
\end{cases} \]

(2)

where \(T_S \) is the temperature at the southern boundary, \(\Delta T \) is the southern boundary-to-equator temperature difference, and \(T_N \) is the temperature at the northern boundary. For the experiments reported here, we choose \(T_S = 0^\circ C \), \(\Delta T = 30^\circ C \), and \(T_N = 5^\circ C \), which is broadly similar to the observed temperature distribution of the Atlantic (although with an exaggerated surface temperature at the Equator). This temperature restoring condition is illustrated in Fig. 2c. This basic state forcing is comparable to the “warm pole” experiment of Wolfe and Cessi (2009).

As with temperature, we take a simple restoring approach to the surface salinity of our model ocean. The condition is chosen to give increased salinity in the Tropics, broadly consistent with the observed surface distribution of salinity. By placing the highest salinity at the Equator, rather than displaced to the north and south as in the Northern Atlantic, we ensure that salt is exported from the Tropical regions. The profile of restoring salinity is given by

\[S(\theta) = \begin{cases}
 S_S + \frac{1}{2} \Delta S (1 + \cos(\pi \theta/240)) & \text{if } \theta < 0 \\
 S_N + \frac{1}{2} (\Delta S + S_S - S_N) (1 + \cos(\pi \theta/240)) & \text{if } \theta > 0
\end{cases} \]

(3)

where \(S_S \) is the salinity at the southern boundary, \(\Delta S \) is the southern boundary-to-equator salinity difference, and \(S_N \) is the salinity at the northern boundary. For the experiments reported here, we take \(S_S = 34 \), \(\Delta S = 3 \), and \(S_N = 34 \), so that the salinity at the northern and southern boundary is the same. The meridional profile of salinity restoring condition is shown in Fig. 2c. More correctly we should prescribe the surface freshwater flux, but by retaining a restoring condition, we allow ourselves the luxury of being able to determine the surface density, and thus the stratification and overturning regime, of the sector model \textit{a priori} (see below for details.). We also reduce the possibility of a salt advection feedback operating on the meridional overturning, leading to multiple equilibria (Stommel 1961; Rasmussen and Ganopolski 1999; Johnson et al. 2007).

The combination of the above surface restoring conditions for temperature and salinity gives rise to the surface-referenced potential density (henceforth density) restoring profile illustrated in Fig. 2d. As long as the northern boundary density is in between the southern boundary density and the density at the northern edge of the reentrant channel (as shown by the dotted line in Fig. 2d), the resulting stratification layers model analogues of Antarctic Intermediate Water (AAIW), North Atlantic Deep Water (NADW), and Antarctic Bottom Water (AABW) in that order. The overturning associated with this stratification looks like the North Atlantic; there is deep water formation at both northern and southern boundaries and two cells, much like those described by Toggweiler et al. (2006). By perturbing the surface density restoring profile, typically by setting \(S_N \) to values higher or lower than \(S_S \), it is possible to produce two other broad categories of stratification. A sufficient increase in \(S_N \) will create the densest water in the domain at the northern boundary. This shuts down the bottom (AABW) cell of the RMOC and produces a warm, salty abyssal mass almost solely made up of model analogue NADW. Water from the southern end of the domain becomes surface trapped, forming a cold, fresh surface layer within the circumpolar channel. In contrast, if \(S_N \) is selected such that the water at the northern boundary is less dense than any of the water within the channel, the model analogue NADW becomes surface trapped. The entire domain becomes dominated by model analogue AABW and AAIW and there is no net upwelling within the circumpolar channel.

Regardless of the surface restoring conditions, it is possible to obtain qualitatively similar RMOCs/stratifications to these alternative states by perturbing the model parameters. For example shutting off the wind or significantly increasing \(\kappa_v \) will both produce the second type of RMOC/stratification described above (see Sections 5b and 6b, respectively). The RMOCs/stratifications described here are much like those of Vallis (2000), and Henning and Vallis (2004, 2005), and indicate that the gross parameters of the ocean circulation that select for the particular oceanic RMOC/stratification remain the same regardless of whether the simulated ocean is eddying in nature.

In the Sections that follow we discuss several suites of model experiments that use grid spacings of 2°, 1/2°, and 1/6°. We refer to these as non-eddy-resolving, eddy-permitting, and eddy-resolving, respectively. Strictly speaking, the 1/2° permit “large-scale geostrophic vortices”, rather than eddies per sé. Similarly, the 1/6° grid does not resolve scales finer than the first Rossby deformation radius. However, in this case the grid is fine enough to resolve the eddies themselves, if not the scale that they form at, and fronts and filaments of vorticity have started to appear in the model results (see Section 4). At each grid spacing, two suites of experiments are discussed. In the first, the peak wind stress (\(\tau_0 \)) is varied, around the basic state value of 0.2Nm\(^{-2}\), from 0Nm\(^{-2}\) to 1Nm\(^{-2}\). In the second suite, the diapycnal diffusivity is varied over the range 1 – 30 × 10\(^{-5}\)m\(^2\)s\(^{-1}\), a range typical of that used in non-eddy-resolving models for a variety of applications. Regardless of model resolution, the basic state experiments use a diapycnal diffusivity of 3 × 10\(^{-5}\)m\(^2\)s\(^{-1}\). In order to shorten the integration time required, each suite was initialised from the final stratification of a previous, lower resolution set of experiments interpolated to the new grid spacing. The 2° were initialised from a set of very coarse
4° experiments and the 1/2° experiments were then initialised from the result of the 2° experiments. After 1000 years, the 1/2° results were then interpolated to 1/6°, and these experiments begun.\(^1\) Where time-average results are discussed, the 2° experiments have been averaged over 1000 years, the 1/2° over 100 years, and the 1/6° over 10 years.

3. Key results

The key results of our numerical experiments are summarised in Fig. 3, where the relationship between the time-mean “circumpolar” transport (the zonal transport through the re-entrant channel) and the strength of the wind forcing (Fig. 3a) and diapycnal diffusivity (Fig. 3b) are shown. Different averaging periods are used for each grid spacing; 1000 years for 2°, 100 years for 1/2°, and 10 years for 1/6°. The bars represent two standard deviations of the instantaneous monthly transport about the mean. They indicate the instantaneous variability of the circumpolar current, rather than any error in the mean, which is extremely small.

Examination of Fig. 3a demonstrates that the non-eddy-resolving model (2°, blue line) behaves much like global climate models, i.e. the circumpolar transport changes dramatically with the wind stress. Even with no wind at all (\(\tau_0 = 0 \text{Nm}^{-2}\)) a significant \(T_{\text{ACC}}\) of \(\sim 50\text{Sv}\) occurs. This transport occurs for the reasons elucidated by Mun-day et al. (2011), i.e. that the global pycnocline is deepened by diapycnal mixing, even in the absence of wind. This then leads to a considerable circumpolar transport via thermal wind shear. The increase in \(T_{\text{ACC}}\) with wind forcing continues across the extreme range considered here, which reaches a peak wind stress of 1.0Nm\(^{-2}\), compared to the basic state value of 0.2Nm\(^{-2}\). The increase in transport does not remain linear with wind stress, although it is close to this limit across many of the experiments. The reader should note that no “error bars” are shown on the \(\Delta = 2°\) line of Fig. 3a as the variability is so low that they would be smaller than the plotted symbol in most cases.

When the grid spacing is refined to 1/2° (red line), and again to 1/6° (green line), the model behaves like the high resolution numerical models discussed in Section 1. In other words, \(T_{\text{ACC}}\) “saturates” at some finite value of wind stress and ceases to increase with further increases in wind stress. Indeed, for the first time our 1/6° exper-
iments demonstrate that such saturation may take place with no wind at all, since the increase in variability effectively makes the green line on Fig. 3a indistinguishable from flat. The extreme range of wind forcing considered in the experiments presented here also demonstrates that an increase in wind stress cannot overwhelm the eddy processes responsible for the eddy saturation phenomenon and that it can be expected to be present even outside of the observed wind stress range. Further refinement of the model grid spacing is unlikely to lead to a change in this conclusion.

The circumpolar transport of the zero wind stress case at both 1/2° and 1/6° is substantial; for both these grid spacings it is \(\sim 2\times\) the transport at 2°. This is due to the way a resolved, or at least permitted, eddy field can respond to changes in wind forcing. At 2°, the GM parameterisation is as capable of flattening the isopycnals at zero wind as it is at \(5\times\) the wind, since the co-efficient is constant. At 1/2° and 1/6°, the eddy field weakens as the wind stress decreases, and so the isopycnals are not flattened quite as much. Hence, the thermal wind across the channel, and the transport of the circumpolar current, is much higher than in the 2° zero wind case.

The increase in variability with increasing wind for the 1/2° and 1/6° experiments in Fig. 3a shows that as the wind stress increases, the extra momentum is transferred in to the variability of the system, rather than the mean state. This makes it difficult to assess the saturation state of a given circumpolar current by examining instantaneous snapshots. For example, at the standard wind forcing (equivalent to a peak wind stress of 0.2Nm\(^{-2}\)) at a grid spacing of 1/6° the circumpolar transport may instantaneously reach \(\sim 200\text{Sv}\), or be as low as \(\sim 0\text{Sv}\), even though the long-term average transport is \(\sim 100\text{Sv}\). This occurs due to the movement of eddies across the virtual “mooring” of the line of latitude used to calculate the transport. When taking into account the extreme variability present in the experiments with higher wind stress, it is easy to appreciate that the resulting trend line may have an instantaneous gradient spanning a wide range of magnitudes, or be of either sign. As a result, monitoring of the ACC to determine its saturation state may require many years of records, in order to generate a robust long-term average and to further determine whether this average is changing.

Altering the diapycnal diffusivity used by the model causes \(T_{\text{ACC}}\) to vary as shown in Fig. 3b. The range of diapycnal diffusivity used in these experiments is similar to that used in a range of general circulation models for a variety of purposes, such as ocean-only investigations of the ocean’s general circulation and the response of a coupled ocean-atmosphere climate model to increased concentrations of greenhouse gases. Over this range of diffusivity, the model gives a significant variation in mean circumpolar transport for all three model resolutions. In contrast to the wind experiments, the 2° and 1/2° sets of experiments exhibit approximately the same sensitivity to changes in diapycnal diffusivity. There is increased variability in the 1/2° experiments, relative to the 2° experiments, due to the eddy-permitting nature of the model at this grid spacing.

As with the wind experiments, the model exhibits a clear separation between the behaviour of the mean \(T_{\text{ACC}}\) at 1/6° and that at 2° and 1/2°. There is also an increase in the variability of the instantaneous circumpolar transport, although, in this case it is not sufficient to argue that the 1/6° line is effectively flat. However, the gradient of the line is clearly reduced with respect to the other grid spacings. This begs the question: if the grid spacing was sufficiently refined, would the model demonstrate complete eddy saturation in the mean circumpolar transport in response to changes in diapycnal mixing?

In summary, at the highest resolution used, a grid spacing of 1/6°, the model shows different behaviour in response to perturbations in wind stress and diapycnal diffusivity. Under changing wind forcing, it demonstrates complete eddy saturation from zero wind stress upwards. In contrast, when the diapycnal diffusivity is varied, there is still significant variation in the mean circumpolar transport. We emphasise that eddy saturation is a steady state/time-mean argument; at eddy-permitting grid spacing, the model always exhibits intense variability in the instantaneous \(T_{\text{ACC}}\). Furthermore, the extent to which the circumpolar currents are eddy compensated is also dependent upon both the type and magnitude of the applied forcing perturbation. See Sections 5 and 6 for further details.

4. Overview of the basic state

a. Mean flow and stratification

The transition from non-eddy-resolving (2°), through eddy-permitting (1/2°), to eddy-resolving (1/6°) grid spacings alters both the instantaneous flow and its long-term time average. At 2° grid spacing, the flow is viscous and dissipative. The “eddy kinetic energy” (EKE, shown in Fig. 4a) is not due to the propagation of mesoscale eddies, but rather to large-scale, low frequency variations of the geostrophic flow. The result is an “EKE” field at least four orders of magnitude smaller than that of the higher model resolutions used. This variability does increase with both wind forcing and diapycnal diffusivity, but remains effectively zero. The circumpolar current is very broad and consists of a single “jet” extending over 5 – 10° of latitude. Inspection of individual snapshots of the barotropic streamfunction shows that they are all much like the 1000 year average shown in Fig. 4a, with no closed contours of streamfunction forming due to the absence of strong vortices.

At both 1/2° and 1/6°, the EKE is truly due to the
The presence of a vigorous mesoscale eddy field. The EKE increases significantly between these two grid spacings, both in terms of magnitude and spatial extent, as the 1/6° grid can resolve more of the mesoscale eddy field. At 1/6° the viscous dissipation of momentum is now sufficiently low for the steepness of the isopycnals near the northern boundary to lead to undamped baroclinic instability and the generation of an eddy field. Examination of the instantaneous temperature and salinity fields also reveals that the very low strength western boundary currents, formed via a thermal wind response to the meridional variation of stratification and resulting inflow/outflow into the western boundary region at low/high latitudes, also become unstable, most likely due to a mixed barotropic/baroclinic instability. While here the focus is on SO/southern boundary processes, these regions could potentially lead to important eddy fluxes of both buoyancy and biogeochemical tracers elsewhere in the domain.

The contours of barotropic streamfunction in Figs. 4b and 4c also reveal the qualitative change in form that the barotropic flow undergoes as grid spacing is refined. Even at 1/2°, the circumpolar flow is concentrated into a much narrower jet across the northern edge of the channel. At 1/6°, the jet is narrower still. The small region of negative streamfunction to the north of the channel is due to the curl of the wind stress creating a very small gyre. At the eddying resolutions, the mean jet also shows the presence of a standing wave pattern, which becomes stronger for the finer grid. By 1/6° the standing wave is strong enough to show closed contours of streamfunction in the time-mean. The instantaneous barotropic streamfunction at 1/2° and 1/6° shows considerable deviation from the time-mean picture of Figs. 4b and 4c, since the circumpolar current itself can migrate and the eddies propagate. In addition to general baroclinic instability throughout the channel, the standing wave undergoes instability processes and barotropic eddies, visible as closed contours of barotropic streamfunction, are able to propagate southwards along the edge of the step within the channel (not shown).

It is notable in Fig. 3 that there is a systematic reduction in T_{ACC} between the 1/6° experiments and the coarser grid spacings. This is due to a reduction in the thermal wind shear, which ultimately determines much of the circumpolar transport. This is dominated by changes in global pycnocline depth, although a slight warming of the abyss also contributes. The two isopycnals drawn in
Fig. 6. Domain average temperature over the life-time of the experiment for (a) 1/2° experiments; (b) 1/6° experiments.

Fig. 7. Instantaneous monthly values of circumpolar transport for (a) 1/2° (100 year sample after 4000 years); (b) 1/6° (10 year sample after 400 years).

Fig. 5 for all three basic states indicate that whilst the light density layers are at approximately the same depth for each grid spacing, the depth of the heavier water masses can vary considerably between grid spacings. In particular, we see that the effect of the strong surface restoring is to pin the density outcrops to roughly the same latitude, but that in the 1/6° experiment the 1036.5kgm⁻³ isopycnal is shallower at the northern edge of the channel. The reduced slope of this isopycnal across the channel and thus smaller meridional density gradients, gives rise to a weaker thermal wind shear and lower circumpolar transport for the 1/6° basic state, and the other 1/6° experiments (see Fig. 3a).

b. Adjustment timescales

Treguier et al. (2010) make the point that understanding an eddying ocean’s response to Southern Annular Mode (SAM) wind events requires that these models be at thermodynamic equilibrium. Reaching such an equilibrium is a major motivation for the use of an idealised geometry such as ours. In order to assess any remaining drift in the model experiments, we have examined a number of metrics, including domain average temperature/salinity and the circumpolar transport. Typically, there is no question as to the steady state nature of the 2° simulations, as they can be trivially run for as long as required, in this case 20 000 years. However, determination of the steady state nature, or otherwise, of the 1/2° and 1/6° experiments is, at least partly, subjective. For this reason, Figs. 6a and 6b present the domain average potential temperature as a function of time for the 1/2° and 1/6° basic states, respectively, as well as the extreme wind stress and diapycnal diffusivity experiments.

The 1/2° experiments have all been run for 4000 years. As Fig. 6a demonstrates, the domain average temperature shows little meaningful drift by this point. For the more weakly forced experiments, here characterised by the zero wind stress case, the required spin-up time is significantly extended. Indeed, after 1000 years, the zero wind stress experiment is clearly still adjusting. This long centennial-to-millennial adjustment timescale is predicted by conceptual models (Allison et al. 2011; Jones et al. 2011) and is a consequence of the time it takes for a small change in the net volume transport out of the SO to “fill the box” of the North Atlantic. In the case of the 1/6° experiments, the difference between the initial and final model state is smaller than for both 2° and 1/2°, i.e. the box that must be filled is smaller. Hence, there is a noticeable decrease in the spin-up time as resolution increases.

The spinup of the 1/6° experiments is characterised in Fig. 6b. Again, the more strongly forced experiments show considerably faster adjustment, at least during the initial phase. After 400 years, the point at which the results here are shown, the domain average temperature is still varying. However, we have continued the 3 experiments in Fig. 6b, and experiments with the highest and lowest diapycnal diffusivities (30 × 10⁻⁵m²s⁻¹ and 1 × 10⁻⁵m²s⁻¹, respectively), for a further 200 years, for a total of 600 years of model integration. By this point the domain average temperature is typically drifting by ∼ ±0.02°C/century, with the experiment with five times the basic state wind drifting at about twice this rate.

Of more relevance to our main conclusions (see Section 3) is the degree to which the mean circumpolar transport is still varying. The instantaneous variation of this diagnostic, as a series of monthly values, is shown for the century/decade averaging period of the 1/2° and 1/6° experiments in Figs. 7a and 7b, respectively. This demonstrates the clear separation between the different experiments at 1/2°, but the over-lapping nature of T_{ACC} with different wind stresses at 1/6°. The extended run of the 1/6° basic state and 4 extreme experiments indicate that our conclusions regarding the straightness of the 1/6° line in Fig. 3a and the curvature present in Fig. 3b are not altered by the low degree of transience still present in the stratification.
Any remaining drift in the domain average temperature and salinity does not significantly alter the circumpolar transport.

c. Residual meridional overturning circulation

In an eddying ocean the circulation that actively transports tracers is not simply the Eulerian-mean of the velocity field. Rather, it includes a “bolus” component, which can be derived from the thickness-weighted mean flow (Gent et al. 1995; Lee et al. 1997) and is equivalent to the residual velocity in a transformed Eulerian-mean formulation (McIntosh and McDougall 1996; Marshall 1997). Care must be taken as to the method by which the residual circulation is calculated, with quantitatively different circulations resulting from different methods of averaging (Nurser and Lee 2004a,b).

The RMOC is here diagnosed from the model results using the thickness-weighted averaging method of Abernathey et al. (2011), i.e. the following integral is calculated at every timestep

$$\Psi_{res}(y, \theta) = -\frac{1}{\Delta t} \int_{t_0}^{t_0+\Delta t} \int_{0}^{L_x} \int_{\rho_0}^{\rho} (hv) \ d\rho \ dx \ dt,$$

(4)

where $h = \partial z/\partial \rho$ is the layer thickness in potential density referenced to the 30th model level (at ~ 2000m depth, henceforth “potential density”) coordinates. The integral is calculated using 241 discrete layers that are 0.025kgm$^{-3}$ thick. It is this streamfunction that describes the circulation of tracers most accurately, eliminating the “Deacon cell” in the Southern Ocean (Danabasoglu et al. 1994), and closely resembling the structure of the circulation in an isopycnal model (see, for example, Hallberg and Gnanadesikan 2006). Using this method of calculation combines the Eulerian-mean circulation caused by surface Ekman transport and eddy-induced bolus flux into a single diagnostic.

Broadly speaking, the residual overturning for each of the different model resolutions is similar. In all cases, a model analogue of the upper North Atlantic Deep Water (NADW) cell overlies a lower Antarctic Bottom Water (AABW) cell. As seen in Fig. 8a-c, the upper cell does not significantly change topology or strength with finer grid spacing. The potential density at which water flows into the re-entrant channel does lighten slightly at 1/6°, but is otherwise relatively invariant, given the large differences in EKE between the experiments. The upper cell leads to upwelling within the confines of the re-entrant channel (shown by the dashed line), with subduction actively occurring at the northern edge. This gives rise to a model analogue of the Antarctic Intermediate Water (AAIW) cell, which is very much surface trapped. At 1/6° this corresponds to a local peak in the convective index (not shown), demonstrating shallow, local convection driving this third cell to form mode waters. Notably, the bottom cell strengthens with increasing model resolution. We attribute this to the increase in strength of the southwards eddy flux of heat across the geostrophically-blocked band of latitudes. This gives rise to a large increase in surface heat flux, due to the restoring condition on temperature, and deep convection, which takes place within the last few grid boxes next to
the southern boundary, and thus drives a stronger circulation. In general, the bottom cell remains weak, due to the absence of significant deep water formation to the south of “Drake Passage”, in this model set-up.

The thick grey contour in Fig. 8a-c is the time- and zonal-average surface potential density. This contour shows little variation between resolutions due to the salinity and temperature restoring conditions applied at the surface. The presence of streamlines of RMOC above the time-zonal-mean potential density contour in Fig. 8a-c is an indication that, in an instantaneous sense, important diabatic transformations take place at densities lower than the time-zonal-mean. In areas where eddy processes, such as in the re-entrant channel, these transformations are stronger and/or more frequent. Near the northern boundary the anti-clockwise advection of potential density anomalies anti-clockwise around the basin can also lead to this effect.

5. Sensitivity to wind forcing

As the numerical grid spacing is decreased in the narrow sector model, the circumpolar transport eventually becomes invariant to changes in wind stress (see Section 3). However, other aspects of the ocean circulation, such as the residual overturning circulation, the statistical properties of the eddy field, may remain sensitive to changes in wind forcing. Here we examine some of these aspects of the ocean circulation for a selection of representative experiments used in the production of Fig. 3a, between which the wind stress has been altered.

a. Eddy kinetic energy

In Fig. 4 it is clear that as the model grid spacing is refined, EKE increases, due to improved resolution of mesoscale instability processes. This is symptomatic of the more vigorous mesoscale eddy field and is common in most general circulation models of the ocean as the eddy-resolving threshold is passed (see, for example, Roberts et al. 2004; Farneti et al. 2010). Typically this increase in EKE is seen as an improvement in realism, with respect to observations of EKE in the real ocean by, for example, satellite altimetry. As Fig. 9a demonstrates, increasing the wind, at a fixed grid spacing, leads to an increase in EKE. The large separation between the EKE of equivalent 1/2° and 1/6° experiments remains, although the EKE of the 1/2° experiment with five times the basic state wind (peak wind stress of 1.0Nm$^{-2}$ compared to 0.2Nm$^{-2}$) has comparable EKE to the 1/6° basic state. The EKE of 2° experiments always remains at least three orders of magnitude lower than the 1/2° experiments, and so is not shown. For the 1/6° experiments, the growth of the EKE with the wind forcing is slightly faster than linear.

Fig. 9a demonstrates that once the eddy-permitting threshold is passed, defined here as being at ~1/2°, there is a strong correlation between surface momentum forcing and the domain average EKE. When combined with Fig.

![Figure 9](image-url)
Fig. 10. Residual overturning for wind perturbation experiments, including the GM component for (a) zero wind, 2° averaged over 1000 years; (b) zero wind, 1/2° averaged over 100 years; (c) zero wind, 1/6° averaged over 10 years; (d) 5× wind, 2° averaged over 1000 years; (e) 5× wind, 1/2° averaged over 100 years; (f) 5× wind, 1/6° averaged over 10 years. Reds indicate clockwise circulation and blues indicate anti-clockwise circulation. Contours are drawn every 0.25Sv with the first positive/negative contour at ±0.25Sv. The solid grey line marks the time-zonal-mean surface potential density. The dashed black line marks the edge of the circumpolar channel.

3a, it shows that the increasing momentum input at the surface of the ocean passes not into the mean flow, leading to a higher time-mean volume transport, but into the eddy kinetic energy. The time-mean EKE does not allow us to distinguish between larger eddies and stronger eddies, although inspection of sea surface height and temperature fields indicates that the eddies do indeed become both larger and stronger. The movement of these eddies then leads to the much larger variation in circumpolar current observed in Fig. 3a, and the stronger vertical momentum/southwards heat transport required to close the form drag balance of the circumpolar current (Olbers 1998).

b. Residual meridional overturning circulation

Viebahn and Eden (2010) find that the sensitivity of the overturning to changes in wind forcing in their model is strongly dependent upon the size of the grid spacing, i.e. the presence of a resolved eddy field. Typically, at higher resolution (finer grid spacing), the sensitivity is reduced. However, even at a 5km grid spacing, their model does not produce total eddy compensation, i.e. the RMOC does still change in response to an altered wind field. The eddy-resolving channel model of Abernathey et al. (2011) demonstrates that sensitivity of the residual overturning circulation to changes in wind forcing depends crucially on the formulation of the surface buoyancy forcing con-
diation. In particular, the sensitivity is enhanced for relaxation boundary conditions, as used by ourselves and Viebahn and Eden (2010), with respect to fixed flux boundary conditions. This is due to changes in the implied surface buoyancy flux under a restoring boundary condition. In the adiabatic limit, the residual circulation must match the surface buoyancy flux (Walin 1982), and so modification of the fluxes has a significant impact upon the RMOC. The sensitivity of the overturning to surface buoyancy forcing was recently investigated by Morrison et al. (2011). As with Viebahn and Eden (2010), sensitivity to changes in the magnitude of the surface flux of buoyancy was reduced at finer grid spacing. However, these three studies have all considered domains that were truncated to the north, requiring that the northern boundary stratification be prescribed in some way. In contrast, here the stratification to the north is allowed to freely vary.

The RMOC for the lowest (no wind) and highest (peak wind stress of 1.0 Nm$^{-2}$) perturbation experiments are shown in Fig. 10 for all three grid spacings. The RMOCs have been calculated in the same way as those for the basic state, described in Section 4c. There is a large qualitative change in the type of circulation that results in the absence of wind (see Figs. 10a-c): the quasi-adiabatic inflow of the NADW cell no longer penetrates into the re-entrant channel, which results in a downwelling regime within the confines of the channel. This is due to the lack of Ekman transport in the surface model layer. Removal of this transport removes the suction on the lower layers that results in upwelling. As such, the eddy bolus transport, which does not go to zero due to finite isopycnal slope and eddy generation, leads to downwelling within the channel. This regime change is independent of model resolution, as one might expect, although quantitative differences between the resolutions still occur.

When the surface wind stress is increased, the residual overturning tends to strengthen, as shown in Figs. 10d-l. The RMOC is still quasi-adiabatic, outside of the surface layers, but the inflow into the channel and subsequent upwelling has increased. This general increase occurs regardless of model resolution. However, visual inspection indicates that the RMOC of the 1/2$^\circ$ and 1/6$^\circ$ experiments (Figs. 10e and 10f, respectively) has increased to a lesser degree than the 2$^\circ$ experiment. As with the basic states RMOC of Section 4c, the bottom/AABW cells noticeably increase in strength for these extreme wind forcing simulations. This is due to the increase in convection at the southern boundary, rather than any direct wind-driving effects.

In Fig. 9b the change in the RMOC as surface wind stress is altered is quantified by using the overturning value at a specific potential density at 30$^\circ$S, just to the north of the circumpolar channel. For the upper (NADW) cell, we use a density of 1035.5 kgm$^{-3}$; for the lower (AABW) cell, we use a density of 1036.375 kgm$^{-3}$. The difference between the RMOC streamfunction at these two densities then gives a measure of the amount of water flowing in to the channel region and upwelling. The quantitative details vary depending on the exact values of latitude and density chosen. However, the qualitative shape of the curves, and the conclusions reached, do not.

Fig. 9b indicates that regardless of model resolution, the upper cell retains finite sensitivity to wind forcing. However, at both 1/2$^\circ$ and 1/6$^\circ$ there is a levelling out of the curve at extreme values of the applies surface wind stress. This is particularly noticeable for the 1/6$^\circ$ experiments, where beyond twice the basic state wind stress (equivalent to a peak wind stress of 0.4 Nm$^{-2}$) there is very little further change. This points towards the possibility of total eddy compensation in the residual overturning, just as total eddy saturation occurred for the circumpolar volume transport in Section 3. Viebahn and Eden (2010) and Morrison and Hogg (2012) both see a similar loss of sensitivity of the RMOC to wind stress changes in their model experiments, although not quite to the same degree. This could be for a combination of reasons, including the cropping of their model domains at the Equator (both), the use of fixed flux surface buoyancy forcing (Morrison and Hogg 2012), and the more moderate wind forcing perturbations they apply. The wind forcing perturbations considered here extend well beyond the range the cited papers consider.

In contrast to the upper cell, the lower cell (dashed lines in Fig. 9b) begins to show increased sensitivity to the wind stress at these higher wind stress multiples. Although this sensitivity remains low in the 2$^\circ$ and 1/2$^\circ$ experiments, it significantly increases in the 1/6$^\circ$ experiments. We attribute this to the same mechanism that gives rise to a slight increase in the bottom cell in the basic state as the model grid is refined, i.e. the southwards eddy heat flux increases, allowing for the arrival of more warm water at the southern boundary, and thus stronger convection. The sign of the change in the overturning of the bottom cell is in the opposite sense to that of Abernathey et al. (2011, see their Fig. 5), who see an increasingly positive streamfunction in their bottom cell as wind increases under restoring boundary conditions. This could be due to the large changes in experimental design, specifically the use by Abernathey et al. of a meridionally-truncated domain with full-depth restoring zone on the northern boundary. Anecdotally, we have found that such restoring at depth is considerably more effective at preventing changes in the abyssal stratification, when compared to a surface restoring condition. As a result, our abyssal stratification can change to a larger degree between both model resolutions and individual experiments at the same grid spacing. Such changes could lead a considerably different residual flow, potentially allowing for the increase in the bottom cell that we see here.
c. Pycnocline depth and stratification

To construct a quantitative measure of the model’s stratification, we adopt the following definition of pycnocline depth due to G99 and Gnanadesikan et al. (2007):

\[
D = 2 \int_{-H}^{0} \frac{z}{z_2} [\sigma_2 - \sigma_2(-H)] \, dz
\]

(5)

where \(D \) is the pycnocline depth, \(\sigma_2 \) is the potential density referenced to the 30th model level (at \(\sim 2000m \)), and \(z = -H \) is the depth of the lowest model level. This is essentially a centre-of-mass calculation for the vertical coordinate. After area-weighted averaging between 30°S and 30°N, this provides a quantitative measure of how deep the pycnocline is. Averaging over a limited area of the domain in this way avoids the northern and southern boundaries, where a deep mixed layer may develop and bias the resulting diagnostic heavily towards these regions. The result of this calculation for the wind experiments at all three grid spacings is shown in Fig. 9c.

Fig. 9c summarises the contents of Fig. 5, in as much as its shows that the pycnocline depth in the 1/6° basic state, characterised by the \(\sigma_2 = 36.5 \text{kgm}^{-3} \) isopycnic in Fig. 5, is shallower than both the 2° and 1/2° pycnocline. It also confirms that the pycnocline depth in the 2° and 1/2° basic state calculations are effectively the same. Primarily, the figure reinforces the close link between pycnocline depth and circumpolar transport highlighted in Section 1, i.e. that through thermal wind they are strongly coupled and, thus, the eddy saturation hypothesis is as much about pycnocline depth/stratification as it is about transport. It indicates that whilst the pycnocline depth deepens considerably at 2° under increased wind forcing, the extent of deepening at both 1/2° and 1/6° is much reduced. For example, at 2° the difference between pycnocline depth at zero wind and 5 multiples of the basic state wind is \(\sim 1800 \text{m} \). However, at 1/6° the difference between these most extreme pycnocline depths is only \(\sim 150 \text{m} \).

6. Sensitivity to diapycnal diffusivity

As the numerical grid spacing is decreased in the narrow sector model, the circumpolar transport becomes less sensitive to changes in diapycnal diffusivity (see Section 3). In contrast to the wind experiments, the model does not reach a point of total eddy saturation at a grid spacing of 1/6°. Here we examine other aspects of the ocean circulation already discussed for the wind experiments in Section 5, for experiments in which the diapycnal diffusivity has been both increased and decreased.

a. Eddy kinetic energy

The variation of EKE with diapycnal diffusivity coefficient is shown in Fig. 11a (as with Fig. 9a, the 2° experiments are omitted for clarity due to the \(\sim 0 \) EKE). As with increased wind forcing, an increase in the co-efficient
gives rise to an increase in EKE, although not to the same extent (with respect to the values obtained at the extreme perturbations considered, due to the order of magnitude difference between wind stress and diapycnal diffusivity, $\partial \text{EKE}/\partial \kappa_v \gg \partial \text{EKE}/\partial \tau$). It also remains true that the more refined grid of the $1/6^\circ$ experiments is more able to represent the mesoscale eddy field and the instability that generates it. As a result, the EKE for the $1/6^\circ$ experiments is always higher than for the equivalent $1/2^\circ$ experiment. Similarly, the western boundary currents themselves are increasingly unstable, as is the flow close to the northern boundary.

The mechanism by which an increase in diapycnal diffusivity acts to increase the EKE is similar to that which operates in the case of changes to wind forcing. With reference to the conceptual model of G99, an increased diapycnal diffusivity acts to deepen the pycnocline. Making the reasonable assumption that the pycnocline will outcrop within the confines of the channel, this will lead to a steepening of the isopycnals across the channel. Hence, the flow will become more susceptible to baroclinic instability and higher EKE, and a deeper pycnocline, will result. At the grid spacings considered here, the increase in resolution is not sufficient to completely offset the increased diapycnal diffusivity perturbation experiments, including the GM component for (a) $\kappa_v = 1 \times 10^{-5} \, \text{m}^2 \, \text{s}^{-1}$, 2° averaged over 1000 years; (b) $\kappa_v = 1 \times 10^{-5} \, \text{m}^2 \, \text{s}^{-1}$, $1/2^\circ$ averaged over 100 years; (c) $\kappa_v = 1 \times 10^{-5} \, \text{m}^2 \, \text{s}^{-1}$, $1/6^\circ$ averaged over 10 years; (d) $\kappa_v = 30 \times 10^{-5} \, \text{m}^2 \, \text{s}^{-1}$, 2° averaged over 1000 years; (e) $\kappa_v = 30 \times 10^{-5} \, \text{m}^2 \, \text{s}^{-1}$, $1/2^\circ$ averaged over 100 years; (f) $\kappa_v = 30 \times 10^{-5} \, \text{m}^2 \, \text{s}^{-1}$, $1/6^\circ$ averaged over 10 years. Reds indicate clockwise circulation and blues indicate anti-clockwise circulation. Contours are drawn every 0.25Sv with the first positive/negative contour at ± 0.25Sv. The solid grey line marks the time-zonal-mean surface potential density. The dashed black line marks the edge of the circumpolar channel.

Fig. 12.
diffusivity. As a result, the pycnocline deepens (see Section c), as the increased diffusivity acts as a source of potential energy. For the wind experiments, more of the potential energy that results from the wind’s attempt to steepen the energy. For the wind experiments, more of the potential energy sources/sinks is dependent upon spatial distribution of those sources and sinks (Oliver and Edwards 2008). As a result, it is non-trivial to determine the changes in overturning that might result from local changes in diapycnal diffusivity, as opposed to the global change in diffusivity used here.

In contrast to the case for wind changes, the RMOC is not compensated with regards to diapycnal diffusivity changes, as shown in Figs. 12 and 11b. In fact, Fig. 11b indicates exactly the opposite to eddy compensation behaviour, since an increase in model resolution and EKE leads to a steeper slope, and thus increased sensitivity to changes in diapycnal diffusivity. This is because the Eulerian and bolus components of the RMOC are no longer in competition. Instead, the eddy bolus overturning re-enforces the Eulerian overturning. The increase in the bolus overturning due to changes in resolution/model parameter/forcing can than act to increase the RMOC, rather than oppose the accompanying change in the Eulerian overturning. Hence, the RMOC becomes stronger in an eddy-resolving calculation once the overturning has switched to this diabatic regime.

c. Pycnocline depth and stratification

As revealed by Fig. 11c, the range of pycnocline depth achieved at all three grid spacings is broadly comparable; the dramatic reduction in range seen between 2° and $1/2^\circ$ for the wind experiments (Fig. 9c) is not evident. Across all of the values of κ_v considered, the pycnocline depth in the 2° experiments varies by over 300m, as opposed to $\sim 2700m$ for the wind experiments. For both $1/2^\circ$ and $1/6^\circ$, this decreases slightly; the change in stratification and transport are far less dramatic than the change in the RMOC. Thus the changes in stratification and transport are both consistent with arguments based on thermal wind, i.e. that the eddy saturation argument is as much about stratification/ pycnocline depth as it is about circumpolar
transport.

7. Discussion

Recent eddy-resolving numerical simulations of the ocean indicate that the circumpolar transport of the Antarctic Circumpolar Current (ACC), or equivalently the global pycnocline depth, may be remarkably insensitive to changes in wind forcing. Similarly, the residual overturning of the Southern Ocean (SO) may also show a certain degree of insensitivity to wind changes, or at least be less sensitive than its wind-driven Eulerian upwelling component. These two phenomena have been christened *eddy saturation* and *eddy compensation*, respectively. The two phenomena may occur separately, and the inter-relationship between the two remains a topic of research.

Using MITgcm in an eddy-permitting configuration, we have investigated *eddy saturation* and *eddy compensation* under changes in wind forcing and diapycnal diffusivity. Our numerical simulations are, by necessity, idealised. However, there are several key differences to previously published work, such as that of Viebahn and Eden (2010), Abernathey et al. (2011), and Morrison et al. (2011). Firstly, the model domain extends across the Equator, such that the low latitude stratification is not specified *a priori*. Secondly, the applied forcing/parameter perturbations span a wide swath of parameter space, such that the robustness and asymptotic behaviour of the phenomena can be assessed. Thirdly, the equation of state of the ocean is nonlinear, such that we have made the first steps towards a full treatment of the impact of salinity on the ACC and Southern Ocean circulation.

At sufficiently high resolution, in this case an eddy-permitting grid spacing of 1/6°, the model's time-mean circumpolar transport shows (almost) complete insensitivity to wind forcing. Crucially, we have shown that this can occur in the limit of zero wind forcing, implying that an ocean with a vigorous mesoscale eddy field may show no variation of its long-term time-mean ACC transport with wind. We emphasise that *eddy saturation* is very much an argument about the time-mean state of the Southern Ocean. Even though the time-mean circumpolar transport is almost invariant with changes to wind forcing, we find significant changes to the variability as wind is altered.

As one would expect from thermal wind balance, for experiments in which the time-mean zonal transport shows little variation with wind, the global pycnocline depth is also roughly constant. Instantaneously, the mesoscale eddy field may cause individual isopycnals to heave up-and-down by hundreds of metres. However, away from the circumpolar channel, i.e. at low latitudes, the position of the pycnocline does not vary significantly.

At low wind, the sensitivity of the residual meridional overturning circulation is reduced, with respect to the Eulerian mean overturning, and comparable at all model grid spacings. However, at extreme wind forcing, the North Atlantic Deep Water (NADW)/upwelling cell shows much reduced, if not zero, sensitivity to a continued increase in wind. Finite sensitivity would always be expected to remain at “low” wind, since the eddy bolus component of the overturning will not go to zero at zero wind. However, this implies that there may be an upper limit to this finite sensitivity. The applicability of this result to the Southern Ocean requires quantification of how low “low wind” is for the real ocean.

Contrary to the results of Abernathey et al. (2011, see their Fig. 5, red circles) using a restoring surface boundary condition, we find that the Antarctic Bottom Water Cell (AABW)/downwelling cell becomes stronger with increased wind, i.e. the streamfunction at a particular point in latitude and density becomes more negative. We attribute this to the increasingly southwards eddy heat flux near the southern boundary, which leads to stronger southern boundary convection. Whilst this is not directly wind-driven, since the Ekman transport is northwards at every latitude and the details may well be model dependent, it may be a secondary effect of the changing wind forcing.

In the case of the set of experiments in which the diapycnal diffusivity is modified from the basic state value, a rather different set of conclusions result. We find that for the three grid spacings considered here, changes to diapycnal diffusivity still result in significant changes in the circumpolar transport and global pycnocline depth, i.e. *eddy saturation* arguments do not apply as strictly in this case. However, there is a weakening of the sensitivity of the transport at finer grid spacing. This suggests that a further refinement in grid spacing might result in the achievement of *eddy saturation* of the zonal transport and the stratification. The finest grid spacing used here is an eddy-permitting 1/6°, and so we suggest that passing the poorly-defined eddy-resolving threshold might be necessary. Based upon a deformation radius of ~ 8 – 10km in the Southern Ocean, this would require a model grid spacing of no coarser than ~ 4 – 5km, roughly equivalent to 1/12°.

In terms of the residual overturning, the diapycnal diffusivity experiments demonstrate that an increase in model resolution leads to an increase in sensitivity to parameter changes. This is just the opposite of that expected under *eddy compensation*. In this case, the transition to a diabatic overturning regime creates a situation, within the channel region, in which the Eulerian and bolus components are both acting in the same direction. As a result, there is no chance of compensation between them. Rather, a refinement in the model grid, and thus an increase in EKE and the vigour of the mesoscale eddy field, leads to an increase in the bolus component, and thus in the total residual overturning. From the perspective of which pa-
parameter value to use, this indicates that it might be even more crucial for an eddy-resolving model to use the “right” diapycnal diffusivity than one with parameterised eddies.

With reference to the contrast between the wind and diapycnal diffusivity experiments, there may be a global vs. local forcing dichotomy. The wind forcing is very localised to within the channel, whereas diapycnal diffusivity functions throughout the basin. It remains an open question as to whether a localised region of high/low diffusivity within the confines of the channel might have the same effect as the same magnitude of spatially localised variation at the northern boundary. This is particularly relevant given the spatially and temporally varying nature of diapycnal mixing that recent observations have revealed (Polzin et al. 1997; Kunze et al. 2006; Damerell et al. 2012). Such observations indicate that the Southern Ocean is a region of widespread turbulent mixing (Naveira Garabato et al. 2004). Given the trend we see when moving from 1/2° to 1/6°, it might be possible for a sufficiently high resolution numerical model to undergo the eddy saturation and/or eddy compensation if the increased level of diapycnal diffusivity was only spatially localised to a few specific latitudes, for example.

We have not sought to address the question of whether modification of the latitudinal structure of the southern hemisphere and/or migration of the latitude of peak wind stress. Such movement of the wind stress is a key part of proposed methods to alter atmospheric carbon dioxide levels over glacial cycles (Toggweiler et al. 2006). The model geometry used here renders it inappropriate for such use, due to the confined zonal domain. Idealised experiments, with parameterised eddies, demonstrate that it is the wind stress integrated over the path of a circumpolar current that best describes its resulting transport (Allison et al. 2010). We anticipate that such a result would continue to hold in a primitive equation model with resolved eddies, i.e. that movement of the wind stress will not alter the circumpolar transport to any great degree. However, it is less obvious that movement of the wind could lead to a fully compensated overturning circulation.

There are many limitations to the idealised approach that we have taken here. For example, the inclusion of salinity and use of a nonlinear equation of state is certainly a step forwards. However, we adopted a restoring condition for salinity, which incorrectly allows the local salinity to impact the virtual freshwater flux. In our case, this was done to aid the a priori determination of the stratification and overturning. However, a rich range of multiple equilibria can exist in an ocean model with a pure flux condition for salinity. Furthermore, the geometry has been simplified to a single basin. Whether this has affectively condensed the whole global ocean into a 20° sector, or whether it simply represents a narrow Atlantic ocean is debatable. As with the salinity forcing, the use of multiple basins expands the possible multiple equilibria and would give further insight into how eddy saturation and eddy compensation relate to the complexity of the real world. Ideally, the model resolution would be higher, as with Morrison and Hogg (2012), and the model would be global. However, this would likely then prevent our goal of quasi-equilibria being reach.

The climatic implications of the combination of eddy saturation and eddy compensation are important. A totally eddy saturated circumpolar current would have close to invariant mean zonal transport and stratification, i.e. isopycnal slope and depth. If such a current was also totally eddy compensated, the up-/down-welling along these isopycnals would also vary only weakly. Hence, changing wind could do little to increase the rate of upwelling, and subsequent outgassing of abyssal carbon reservoirs, deep ocean carbon in the Southern Ocean. This places doubt upon the extent to which changes in wind forcing could alter global climate. However, this is contingent upon the Earth currently being in a “high” wind regime, such that the Ekman transport does not fall off rapidly with decreasing wind, whilst the eddy bolus transport stays finitely high. The increased sensitivity of our eddying model results to changes in diapycnal diffusivity suggest that changing tidal mixing might be a more reliable way in which to alter climate. However, good estimates of tidal mixing throughout the global ocean, and more information on how an eddy-resolving model responds to localised changes in diapycnal diffusivity, are required to quantitatively assess whether such changes could, for example, help explain the glacial/inter-glacial change in atmospheric carbon dioxide concentration.

Acknowledgments.

Stuart Daines aided with selection of the most appropriate tracer advection scheme. DRM acknowledges Ryan Abernathey for his MITgcm layers package, which made calculation of the residual overturning quick and simple. Discussions with Andy Hogg, Adele Morrison, Mehmet Illicak, Raf Ferrari, and Ric Williams are gratefully acknowledged. This work is supported by NERC. HLJ is supported by a Royal Society University Research Fellowship. DPM acknowledges additional support from the Oxford Martin School. This work made use of the facilities of HECToR, the UK’s national high-performance computing service, which is provided by UoE HPCx Ltd at the University of Edinburgh, Cray Inc and NAG Ltd, and funded by the Office of Science and Technology through EPSRC’s High End Computing Programme.

REFERENCES
Table 1. Standard Model Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biharmonic viscosity (momentum)</td>
<td>ν_A</td>
<td>variable</td>
<td>m2/s</td>
</tr>
<tr>
<td>GM coefficient</td>
<td>κ_{GM}</td>
<td>variable</td>
<td>m2s$^{-1}$</td>
</tr>
<tr>
<td>Grid spacing</td>
<td>Δ</td>
<td>variable</td>
<td>degrees</td>
</tr>
<tr>
<td>Reference diapycnal diffusivity (θ/S)</td>
<td>κ_v</td>
<td>3×10^{-5}</td>
<td>m2/s</td>
</tr>
<tr>
<td>Restoring timescale (S)</td>
<td>λ_S</td>
<td>30</td>
<td>days</td>
</tr>
<tr>
<td>Restoring timescale (θ)</td>
<td>λ_θ</td>
<td>10</td>
<td>days</td>
</tr>
<tr>
<td>Vertical viscosity (momentum)</td>
<td>ν_v</td>
<td>10^{-3}</td>
<td>m2/s</td>
</tr>
</tbody>
</table>

Table 2. Resolution Dependent Model Parameters

<table>
<thead>
<tr>
<th>Grid Spacing</th>
<th>Harmonic Re$_\Delta$</th>
<th>Biharmonic Re$_\Delta$</th>
<th>κ_{GM} (m2/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2°</td>
<td>0.0075</td>
<td>-</td>
<td>1000</td>
</tr>
<tr>
<td>$1/2^\circ$</td>
<td>-</td>
<td>0.15</td>
<td>10</td>
</tr>
<tr>
<td>$1/6^\circ$</td>
<td>-</td>
<td>0.15</td>
<td>0.26</td>
</tr>
</tbody>
</table>

