Although I have a strong background in geology, my principal research interests lie in the application of experimental petrology to global petrological problems. Many geological processes, such as magma genesis, the formation of mineral deposits, or the metamorphism of rocks, cannot be observed directly because they occur deep within the Earth. Although we may have rock samples brought to the surface by geological processes we can use our experiments to confirm, or discredit, the hypothesis that have been made about their formation. Therefore, as an experimental petrologist, I am using lab-based methods.
My current project is aimed at understanding how a number of economically and geologically important chemical elements partition themselves between the silicates of the outer parts of the Earth and sulphides, minerals and liquids rich in sulphur. This research covers a wide range of applications. It helps us to shed light on Earth’s and Moon’s bulk compositions, mantle and core geochemistry, generation of basaltic lavas as well as to provide important information for metallurgy, polymetallic ore deposits and platinum group element (PGE) exploration.
In addition to my research on sulphides, I am involved in work on the composition of garnet in the upper mantle and transition zone. In my current project I work on reconstruction of the transition zone composition by comparing natural majorite garnet inclusions in diamonds with the compositions of experimentally crystallised majorites from pyroxenitic rocks of different composition.
View Selected Publications
- Kiseeva E. S., Vasiukov D. M., Wood B. J., McCammon C., Stachel T., Bykov M., Bykova E., Chumakov A., Cerantola V., Harris J. F., Dubrovinsky L. (2018). Oxidised iron in garnets from the mantle transition zone, Nature Geoscience, 11, 144-147.
- Pedrazzini S., Kiseeva E. S., Escoube R., Hughes G. M., Chapman G., Edmondson P. D., De Lille D., Bagot P. A. J. (2017). In-Service Oxidation and Microstructural Evolution of a Nickel Superalloy in a Formula 1 Car Exhaust. DOI 10.1007/s11085-017-9792.
- Kiseeva E. S., Fonseca R. O. C., Smythe D. J. (2017). Sulphides in the upper mantle: controls over the chalcophile element budget in magmatic systems. Elements 13(2), 111-116.
- Smythe D. J., Wood B. J., Kiseeva E. S. (2017). The S content of silicate melts at sulphide saturation: new experiments and a model incorporating the effects of sulphide composition, American Mineralogist, 102, 4, p 795-803. DOI: 10.2138/am-2017-5800CCBY.
- Kiseeva E. S., Kamenetsky V. S., Yaxley G. M. (2017). Mantle melting vs mantle metasomatism – “chicken or egg” dilemma, Chemical Geology, 455, 120-130. DOI: 10.1016/j.chemgeo.2016.10.026.
- Kiseeva E. S., Wood B. J., Ghosh S., Stachel T. (2016). The pyroxenite-diamond connection, Geochemical Perspectives Letters 2, 1-9.
- Wood B. J., Kiseeva E. S. (2015). Trace element partitioning between sulphide and silicate melts: how lithophile elements become chalcophile and vice versa. American Mineralogist, 100, 11-12, p. 2371-2379.
- Kiseeva E. S., Wood B. J. (2015). The effects of composition and temperature on chalcophile and lithophile element partitioning into magmatic sulphides. Earth and Planetary Science Letters, 424, p.280-294.
- Wood B. J.,Kiseeva E. S., Mirolo F. J. (2014). Accretion and core formation: the effects of sulphur on metal-silicate partition coefficients. Geochimica et Cosmochimica Acta 145, p. 248-267.
- Kiseeva E.S., Wood B. J. (2013). A simple model for chalcophile element partitioning between silicate and sulphide liquids with geochemical applications. Earth and Planetary Science Letters 383, p. 68-81.
- Wood B. J., Kiseeva E. S., Matzen A. K. (2013). Garnet in the mantle and igneous systems. Elements 9, 6, p. 421-426.
- Kiseeva E.S., Yaxley G. M., Stepanov A. S., Tkalčić H., Litasov K. D., Kamenetsky V. S. (2013). Metapyroxenite in the mantle transition zone revealed from majorite inclusions in diamonds. Geology 41, 8, p.883-886.
- Kiseeva E. S., Litasov K. D., Yaxley G. M., Ohtani E., Kamenetsky V. S. (2013). Melting and phase relations of carbonated eclogite at 9-21 GPa and alkali-rich melts in the deep mantle. Journal of Petrology 54, 8, p.1555-1583.
- Kiseeva E. S., Yaxley G. M., Hermann J., Litasov K. D., Rosenthal A., Kamenetsky V. S. (2012). An experimental study of carbonated eclogite at 3.5-5.5 GPa – implications for silicate and carbonate metasomatism in the cratonic mantle. Journal of Petrology 53, 4, p. 727-759.
- Foley, S. F., Yaxley, G. M., Rosenthal, A., Buhre, S., Kiseeva, E. S., Rapp, R. P., Jacob, D. E. (2009). The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos, v.112, p. 274-283.
View Extended Publications
- Kiseeva E. S., Vasiukov D. M., Wood B. J., McCammon C., Stachel T., Bykov M., Bykova E., Chumakov A., Cerantola V., Harris J. F., Dubrovinsky L. (2018). Oxidised iron in garnets from the mantle transition zone, Nature Geoscience, 11, 144-147.
- Pedrazzini S., Kiseeva E. S., Escoube R., Hughes G. M., Chapman G., Edmondson P. D., De Lille D., Bagot P. A. J. (2017). In-Service Oxidation and Microstructural Evolution of a Nickel Superalloy in a Formula 1 Car Exhaust. DOI 10.1007/s11085-017-9792.
- Kiseeva E. S., Fonseca R. O. C., Smythe D. J. (2017). Sulphides in the upper mantle: controls over the chalcophile element budget in magmatic systems. Elements 13(2), 111-116.
- Smythe D. J., Wood B. J., Kiseeva E. S. (2017). The S content of silicate melts at sulphide saturation: new experiments and a model incorporating the effects of sulphide composition, American Mineralogist, 102, 4, p 795-803. DOI: 10.2138/am-2017-5800CCBY.
- Kiseeva E. S., Kamenetsky V. S., Yaxley G. M. (2017). Mantle melting vs mantle metasomatism – “chicken or egg” dilemma, Chemical Geology, 455, 120-130. DOI: 10.1016/j.chemgeo.2016.10.026.
- Kiseeva E. S., Wood B. J., Ghosh S., Stachel T. (2016). The pyroxenite-diamond connection, Geochemical Perspectives Letters 2, 1-9.
- Wood B. J., Kiseeva E. S. (2015). Trace element partitioning between sulphide and silicate melts: how lithophile elements become chalcophile and vice versa. American Mineralogist, 100, 11-12, p. 2371-2379.
- Kiseeva E. S., Wood B. J. (2015). The effects of composition and temperature on chalcophile and lithophile element partitioning into magmatic sulphides. Earth and Planetary Science Letters, 424, p.280-294.
- Wood B. J.,Kiseeva E. S., Mirolo F. J. (2014). Accretion and core formation: the effects of sulphur on metal-silicate partition coefficients. Geochimica et Cosmochimica Acta 145, p. 248-267.
- Kiseeva E.S., Wood B. J. (2013). A simple model for chalcophile element partitioning between silicate and sulphide liquids with geochemical applications. Earth and Planetary Science Letters 383, p. 68-81.
- Wood B. J., Kiseeva E. S., Matzen A. K. (2013). Garnet in the mantle and igneous systems. Elements 9, 6, p. 421-426.
- Kiseeva E.S., Yaxley G. M., Stepanov A. S., Tkalčić H., Litasov K. D., Kamenetsky V. S. (2013). Metapyroxenite in the mantle transition zone revealed from majorite inclusions in diamonds. Geology 41, 8, p.883-886.
- Kiseeva E. S., Litasov K. D., Yaxley G. M., Ohtani E., Kamenetsky V. S. (2013). Melting and phase relations of carbonated eclogite at 9-21 GPa and alkali-rich melts in the deep mantle. Journal of Petrology 54, 8, p.1555-1583.
- Kiseeva E. S., Yaxley G. M., Hermann J., Litasov K. D., Rosenthal A., Kamenetsky V. S. (2012). An experimental study of carbonated eclogite at 3.5-5.5 GPa – implications for silicate and carbonate metasomatism in the cratonic mantle. Journal of Petrology 53, 4, p. 727-759.
- Foley, S. F., Yaxley, G. M., Rosenthal, A., Buhre, S., Kiseeva, E. S., Rapp, R. P., Jacob, D. E. (2009). The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos, v.112, p. 274-283.